• 제목/요약/키워드: residual enzyme activity

Search Result 97, Processing Time 0.02 seconds

High-Level Expression of T4 Endonuclease V in Insect Cells as Biologically Active Form

  • Kang, Chang-Soo;Son, Seung-Yeol;Bang, In-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1583-1590
    • /
    • 2006
  • T4 endonuclease V (T4 endo V) [EC 3. 1. 25. 1], found in bacteriophage T4, is responsible for excision repair of damaged DNA. The enzyme possesses two activities: a cyclobutane pyrimidine dimer DNA glycosylase (CPD glycosylase) and an apyrimidic/apurinic endonuclease (AP lyase). T4 denV (414 bp cDNA) encoding T4 en do V (138 amino acid) was synthesized and expressed using either an expression vector, pTriEx-4, in E. coli or a baculovirus AcNPV vector, pBacPAK8, in insect cells. The recombinant His-Tag/T4 endo V (rHis-Tag/T4 endo V) protein expressed from bacteria was purified using one-step affinity chromatography with a HiTrap Chelating HP column and used to make rabbit anti-His-Tag/T4 endo V polyclonal antibody for detection of recombinant T4 endo V (rT4 endo V) expressed in insect cells. In the meantime, the recombinant baculovirus was obtained by cotransfection of BacPAK6 viral DNA and pBP/T4 endo V in Spodoptera frugiperda (Sf21) insect cells, and used to infect Sf21 cells to overexpress T4 endo V protein. The level of rT4 endo V protein expressed in Sf21 cells was optimized by varying the virus titers and time course of infection. The optimal expression condition was set as follows; infection of the cells at a MOI of 10 and harvest at 96 h post-infection. Under these conditions, we estimated the amount of rT4 endo V produced in the baculovirus expression vector system to be 125 mg/l. The rT4 endo V was purified to homogeneity by a rapid procedure, consisting of ion-exchange, affinity, and reversed phase chromatographies, based on FPLC. The rT4 endo V positively reacted to an antiserum made against rHis-Tag/T4 endo V and showed a residual nicking activity against CPD-containing DNA caused by UV. This is the first report to have T4 endo V expressed in an insect system to exclude the toxic effect of a bacterial expression system, retaining enzymatic activity.

Isolation of a Pseudoalteromonas sp. JH-1 Producing Agarase and Characterization of its Agarase (Agarase를 생산하는 Pseudoalteromonas sp. JH-1의 분리·동정 및 agarase의 특성 연구)

  • Lee, Dong-Geun;Kim, Ju-Hui;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.496-501
    • /
    • 2021
  • In this study, the marine agar-degrading bacterium Pseudoalteromonas sp. JH-1 was isolated, and its growth and agarase properties were investigated. Seawater was collected from the offshore of the Yonggung Temple in Busan, and agar-degrading bacteria were isolated and cultured with marine agar medium. The bacterium Pseudoalteromonas sp. JH-1 was isolated through 16S rRNA gene sequencing. The extracellularly secreted enzyme was obtained from the culture broth of Pseudoalteromonas sp. JH-1 and was used to characterize its agarase. The extracellular agarase exhibited a maximum activity of 116.6 U/l at 50℃ and pH 6.0 of 20 mM Tris-HCl buffer. Relative activities were 31, 59, 94, 100, 45, and 31% at 20, 30, 40, 50, 60, and 70℃, respectively. Relative activities were 49, 85, 100, 86, 81, and 67% at pH 4, 5, 6, 7, 8, and 9, respectively. Residual activity was more than 85% after exposure at 20, 30, and 40℃ for 2 hr, and more than 82% after exposure at 50℃ for 2 hr. Zymogram analysis confirmed that Pseudoalteromonas sp. JH-1 produced at least two agarases of 55 and 97 kDa. As the products of α-agarase and β-agarase have antioxidation, antitumor, skin-whitening, macrophage activation, and prebiotic effects, further studies are needed on the agarase of Pseudoalteromonas sp. JH-1.

Systematic Approach for the Diagnosis of IEM (유전성대사이상질환의 진단의 체계적 접근)

  • Lee, Hong Jin
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.14 no.2
    • /
    • pp.123-134
    • /
    • 2014
  • Recent advances in the diagnosis and treatment of inborn errors of metabolism (IEM) have improved substantially the prognosis of many of these diseases, if diagnosed early enough before irreversible damage occurs. Diseases of inborn errors of metabolism are so diverse over several hundred disease up to now and may be several thousand in near future, and these diversities of IEMs make clinicians embarassed. The signs of neurological dysfunctions of many IEMs manifesting in the neonatal period is very nonspecific, such as poor feeding, poor sucking, apnea or tachypnea, vomiting, hypertonia, hypotonia, seizure, letharginess, consciousness change and coma. But after neonatal period, the signs of neurological deficits become specific and localized. The results of routine basal laboratory tests such as metabolic acidosis, hyperammonemia, lactic acidemia, ketonemia or hyperuricemia can give very important clinical clues for the diagnosis of IEMs. Even no abnormal findings on routine laboratory test could be very important clue for NKH, sulfite oxidase deficiency and peroxisomal disorders. These various clinical manifestations of these diverse diseases can be categorized and summarized. This makes it essential that the practicing clinicians be familiar with the clinical presentations and symptomatic and systematic approaches of these disorders. Characteristic clinical presentations, methods of symptomatic and systematic approach and typing of various disorders is discussed in this review.

Transglutaminase-2 Is Involved in All-Trans Retinoic Acid-Induced Invasion and Matrix Metalloproteinases Expression of SH-SY5Y Neuroblastoma Cells via NF-κB Pathway

  • Lee, Hye-Ja;Park, Mi-Kyung;Bae, Hyun-Cheol;Yoon, Hee-Jung;Kim, Soo-Youl;Lee, Chang-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.286-292
    • /
    • 2012
  • All-trans retinoic acid (ATRA) is currently used in adjuvant differentiation-based treatment of residual or relapsed neuroblastoma (NB). It has been reported that short-term ATRA treatment induces migration and invasion of SH-SY5Y via transglutaminase-2 (Tgase-2). However, the detailed mechanism of Tgase-2's involvement in NB cell invasion remains unclear. Therefore we investigated the role of Tgase-2 in invasion of NB cells using SH-SY5Y cells. ATRA dose-dependently induced the invasion of SH-SY5Y cells. Cystamine (CTM), a well known tgase inhibitor suppressed the ATRA-induced invasion of SH-SY5Y cells in a dose-dependent manner. Matrix metalloproteinase -9 (MMP-9) and MMP-2, well known genes involved in invasion of cancer cells were induced in the ATRA-induced invasion of the SH-SH5Y cells. Treatment of CTM suppressed the MMP-9 and MMP-2 enzyme activities in the ATRA-induced invasion of the SH-SY5Y cells. To confirm the involvement of Tgase-2, gene silencing of Tgase-2 was performed in the ATRA-induced invasion of the SH-SH5Y cells. The siRNA of Tgase-2 suppressed the MMP-9 and MMP-2 activity of the SH-SY5Y cells. MMP-2 and MMP-9 are well known target genes of NF-${\kappa}B$. Therefore the relationship of Tgase-2 and NF-${\kappa}B$ in the ATRA-induced invasion of the SH-SY5Y cells was examined using siRNA and CTM. ATRA induced the activation of NF-${\kappa}B$ in the SH-SY5Y cells and CTM suppressed the activation of NF-${\kappa}B$. Gene silencing of Tgase-2 suppressed the MMP expression by ATRA. These results suggested that Tgase-2 might be a new target for controlling the ATRA-induced invasion of NBs.

Virtual Screening and Testing of GSK-3 Inhibitors Using Human SH-SY5Y Cells Expressing Tau Folding Reporter and Mouse Hippocampal Primary Culture under Tau Cytotoxicity

  • Chih-Hsin Lin;Yu-Shao Hsieh;Ying-Chieh Sun;Wun-Han Huang;Shu-Ling Chen;Zheng-Kui Weng;Te-Hsien Lin;Yih-Ru Wu;Kuo-Hsuan Chang;Hei-Jen Huang;Guan-Chiun Lee;Hsiu Mei Hsieh-Li;Guey-Jen Lee-Chen
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.127-138
    • /
    • 2023
  • Glycogen synthase kinase-3β (GSK-3β) is an important serine/threonine kinase that implicates in multiple cellular processes and links with the neurodegenerative diseases including Alzheimer's disease (AD). In this study, structure-based virtual screening was performed to search database for compounds targeting GSK-3β from Enamine's screening collection. Of the top-ranked compounds, 7 primary hits underwent a luminescent kinase assay and a cell assay using human neuroblastoma SH-SY5Y cells expressing Tau repeat domain (TauRD) with pro-aggregant mutation ΔK280. In the kinase assay for these 7 compounds, residual GSK-3β activities ranged from 36.1% to 90.0% were detected at the IC50 of SB-216763. In the cell assay, only compounds VB-030 and VB-037 reduced Tau aggregation in SH-SY5Y cells expressing ΔK280 TauRD-DsRed folding reporter. In SH-SY5Y cells expressing ΔK280 TauRD, neither VB-030 nor VB-037 increased expression of GSK-3α Ser21 or GSK-3β Ser9. Among extracellular signal-regulated kinase (ERK), AKT serine/threonine kinase 1 (AKT), mitogen-activated protein kinase 14 (P38) and mitogenactivated protein kinase 8 (JNK) which modulate Tau phosphorylation, VB-037 attenuated active phosphorylation of P38 Thr180/ Tyr182, whereas VB-030 had no effect on the phosphorylation status of ERK, AKT, P38 or JNK. However, both VB-030 and VB-037 reduced endogenous Tau phosphorylation at Ser202, Thr231, Ser396 and Ser404 in neuronally differentiated SH-SY5Y expressing ΔK280 TauRD. In addition, VB-030 and VB-037 further improved neuronal survival and/or neurite length and branch in mouse hippocampal primary culture under Tau cytotoxicity. Overall, through inhibiting GSK-3β kinase activity and/or p-P38 (Thr180/Tyr182), both compounds may serve as promising candidates to reduce Tau aggregation/cytotoxicity for AD treatment.

Somatic Cell Analysis and Cobalamin Responsiveness Study in Ten Korean Patients with Methylmalonic Aciduria (한국 메틸말로닌산혈증 환아 10례에서 Somatic Cell 분석과 cobalamin 반응성 연구)

  • Lim, Han Hyuk;Song, Wung Joo;Kim, Gu-Hwan;Watkins, David;Rosenblatt, David S.;Kim, Yoo-Mi;Chang, Mea Young;Kil, Hong Ryang;Kim, Sook Za
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.19 no.1
    • /
    • pp.12-19
    • /
    • 2019
  • Purpose: Isolated methylmalonic acidemia (MMA) is an autosomal recessive inherited disorder of propionate metabolism. There are two subtypes of MMUT gene defects. $Mut^0$ represents complete loss of methylmalonyl-CoA mutase (MCM) activity while mut- is associated with residual MCM activity, which can be stimulated by hydroxocobalamin (OHCbl) supplementation. The objective of this study is to investigate cobalamin responsiveness and mutations present in Korean MMA population. Methods: We evaluated 10 MMA patients using somatic cell complementation analysis on their fibroblasts to measure MCM activity and vitamin B12 responsiveness for the optimal treatment. MMUT gene was sequenced to identify the MMA mutations. Results: For all patients, the incorporation of $[^{14}C]-propionate$ was low, and there was no response to OHCbl. The incorporation of $[^{14}C]-methyltetrahydrofolate$ and $[^{57}Co]-CNCbl$ fell within the normal range. There was adequate synthesis of methylcobalamin while the synthesis of adenosylcobalamin was low. The complementation analysis showed all patients were $mut^0$. The sequence analysis identified 12 different MMUT mutations, including 2 novel mutations, p.Gln267Ter and p.Ile697Phe, were identified. All the patients in this study had neonatal onset of symptoms, belonged to $mut^0$ complementation class, and as a result, showed no cobalamin responsiveness. Conclusion: No Korean MMA patient showed cobalamin responsiveness.

  • PDF

Crop Injury (Growth Inhibition) Induced by Herbicides and Remedy to Reduce It (제초제(除草劑) 약해발생(藥害發生) 양상(樣相)과 경감대책(輕減對策))

  • Kim, K.U.
    • Korean Journal of Weed Science
    • /
    • v.12 no.3
    • /
    • pp.261-270
    • /
    • 1992
  • Many herbicides that are applied at the soil before weed emergence inhibit plant growth soon after weed germination occurs. Plant growth has been known as an irreversible increase in size as a result of the processes of cell divison and cell enlargement. Herbicides can influence primary growth in which most new plant tissues emerges from meristmatic region by affecting either or both of these processes. Herbicides which have sites of action during interphase($G_1$, S, $G_2$) of cell cycle and cause a subsequent reduction in the observed frequency of mitotic figures can be classified as an inhibitor of mitotic entry. Those herbicides that affect the mitotic sequence(mitosis) by influencing the development of the spindle apparatus or by influencing new cell plate formation should be classified as causing disruption of the mitotic sequence. Sulfonylureas, imidazolinones, chloroacetamides and some others inhibit plant growth by inhibiting the entry of cell into mitosis. The carbamate herbicides asulam, carbetamide, chlorpropham and propham etc. reported to disrupt the mitotic sequence, especially affecting on spindle function, and the dinitroaniline herbicides trifluralin, nitralin, pendimethalin, dinitramine and oryzalin etc. reported to disrupt the mitotic sequence, particularly causing disappearence of microtubles from treated cells due to inhibition of polymerization process. An inhibition of cell enlargement can be made by membrane demage, metabolic changes within cells, or changes in processes necessary for cell yielding. Several herbicides such as diallate, triallate, alachlor, metolachlor and EPTC etc. reported to inhibit cell enlargement, while 2, 4-D has been known to disrupt cell enlargement. One potential danger inherent in the use of soil acting herbicides is that build-up of residues could occur from year to year. In practice, the sort of build-up that would be disastrous is unikely to occur for substances applied at the correct soil concentration. Crop injury caused by soil applied herbicides can be minimized by (1) following the guidance of safe use of herbicides, particularly correct dose at correct time in right crop, (2) by use of safeners which protect crops against injury without protecting any weed ; interactions between herbicides and safeners(antagonists) at target sites do occur probably from the following mechanisms (1) competition for binding site, (2) circumvention of the target site, and (3) compensation of target site, and another mechanism of safener action can be explained by enhancement of glutathione and glutathione related enzyme activity as shown in the protection of rice from pretilachlor injury by safener fenclorim, (3) development of herbicide resistant crops ; development of herbicide-resistant weed biotypes can be explained by either gene pool theory or selection theory which are two most accepted explanations, and on this basis it is likely to develop herbicide-resistant crops of commercial use. Carry-over problems do occur following repeated use of the same herbicide in an extended period of monocropping, and by errors in initial application which lead to accidental and irregular overdosing, and by climatic influence on rates of loss. These problems are usually related to the marked sensitivity of the particular crops to the specific herbicide residues, e.g. wheat/pronamide, barley/napropamid, sugarbeet/ chlorsulfuron, quinclorac/tomato. Relatively-short-residual product, succeeding culture of insensitive crop to specific herbicide, and greater reliance on postemergence herbicide treatments should be alternatives for farmer practices to prevent these problems.

  • PDF