• Title/Summary/Keyword: residential energy consumption

Search Result 189, Processing Time 0.034 seconds

A Case Study of Decreasing Environment Pollution Caused by Energy Consumption of a Dormitory Building Which Only Using Electricity by Efficiently Simulating Applying Residential SOFC (Solid Oxide Fuel Cell)

  • Chang, Han;Lee, In-Hee
    • Architectural research
    • /
    • v.21 no.1
    • /
    • pp.21-29
    • /
    • 2019
  • Recent years in Korea, some new developed buildings are only using electricity as power for heating, cooling, bathing and even cooking which means except electricity, there is no natural gas or other kinds of energy used in such kind of building. In vehicle industry area, scientists already invented electric vehicle as an environment friendly vehicle; after that, in architecture design and construction field, buildings only using electricity appeared; the curiosity of the environment impact of energy consumption by such kind of building lead me to do this research. In general, electricity is known as a clean energy resource reasoned by it is noncombustible energy resource; however, although there is no environmental pollution by using electricity, electricity generation procedure in power plant may cause huge amount of environment pollution; especially, electricity generation from combusting coal in power plant could emit enormous air pollutants to the air. In this research, the yearly amount of air pollution by energy using under traditional way in research target building that is using natural gas for heating, bathing and cooking and electricity for lighting, equipment and cooling is compared with yearly amount of air pollution by only using electricity as power in the building; result shows that building that only uses electricity emits much more air pollutants than uses electricity and natural gas together in the building. According to the amount of air pollutants comparison result between two different energy application types in the building, residential SOFC (Solid oxide fuel cell) is simulated to apply in this building for decreasing environment pollution of the building; furthermore, high load factor could lead high efficiency of SOFC, in the scenario of simulating applying SOFC in the building, SOFC is shared by two or three households in spring and autumn to increase efficiency of the SOFC. In sum, this research is trying to demonstrate electricity is a conditioned environment friendly energy resource; in the meanwhile, SOFC is simulated efficiently applying in the building only using electricity as power to decrease the large amount of air pollutants by energy using in the building. Energy consumption of the building is analyzed by calibrated commercial software Design Builder; the calibrated mathematical model of SOFC is referred from other researcher's study.

Operational Optimization of Anodic/cathodic Utilization for a Residential Power Generation System to Improve System Power Efficiency (가정용 연료전지 시스템의 전기 효율 향상을 위한 연료/공기 이용률 운전 최적화)

  • Seok, Donghun;Kim, Minjin;Sohn, Young-Jun;Lee, Jinho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.373-385
    • /
    • 2013
  • To obtain higher power efficiency of Residential Power Generation system(RPG), it is needed to operate system on optimized stoichiometric ratios of fuel and air. Stoichiometric ratios of fuel/air are closely related to efficiency of stack, reformer and power consumption of Balance Of Plant(BOP). In this paper, optimizing stoichiometric ratios of fuel/air are conducted through systematic experiments and modeling. Based on fundamental principles and experimental data, constraints are chosen. By implementing these optimum values of stoichiometric ratios, power efficiency of the system could be maximized.

A Study on GRNN Control Strategies for Floor Radiant Heating System in Residential Apartments (공동주택 바닥복사 난방시스템의 GRNN 제어 적용에 관한 연구)

  • Song, Jae-Yeob;Ahn, Byung-Cheon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.12
    • /
    • pp.830-836
    • /
    • 2012
  • In this study, the effects of heating control methods on heating control performance and energy consumption in the floor radiant heating control system of residential apartments were research by computer simulation. A general regression neural network(GRNN) control method for reducing indoor temperature overshoot and saving energy in floor radiant heating system is suggested. The GRNN control method shows good responses in comparison with the conventional and outdoor reset control methods for improving indoor thermal environment and reducing energy consumption.

Estimation of residential electricity demand function using cross-section data (횡단면 자료를 이용한 주택용 전력의 수요함수 추정)

  • Lim, Seul-Ye;Lim, Kyoung-Min;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • This paper attempts to estimate the residential electricity demand function, using survey data of 521 households in Korea. As the residential electricity demand function provides us information on the pattern of consumer's electricity consumption, it can be usefully utilized in predicting the impact of policy variables such as electricity price and forecasting electricity demands. We apply least absolute deviation(LAD) estimation as a robust approach to estimating parameters. The results showed that price and income elasticities are -0.68 and 0.14 respectively, and statistically significant at the 10% levels. The price and income elasticities portray that residential electricity is price- and income-inelastic. This implies that the residential electricity is indispensable goods to human-being's life, thus the residential electricity demand would not be promptly adjusted to responding to price and/or income change.

A Study on the Performance Evaluation of Recirculation System for Individual Hot Water Supply System in Residential Buildings (주거건물의 개별급탕방식 환탕배관 적용에 따른 급탕성능 평가에 관한 연구)

  • Cha, Min-Chul;Yeo, Myoung-Souk;Seok, Ho-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.12
    • /
    • pp.857-864
    • /
    • 2007
  • In the current residential building, hot water supply system consumes the second largest energy in order to make the thermal comport condition of residential space. The more residential environment improves the more the demand for hot water and water consumption is increasing gradually. So this study examines the possibility of applying the recirculation for individual hot water supply system compared with the existing method for waiting time for hot water, wasted water and energy consumption. The results are as follows. (1) In case of recirculation system method the waiting time for hot water can be reduced up to $69\sim85%$ in spring and fall period and so dose up to $77\sim85%$ in winter period. (2) The total wasted water has a little change compared with the existing method which can make the total wasted water reduced about $77\sim86%$. (3) The efficiency of hot water supply system can be improved, if the method which blocks the inflow of cold water is applied, when return pump is operated to recirculate hot water in recirculation system.

Load Modeling based on System Identification with Kalman Filtering of Electrical Energy Consumption of Residential Air-Conditioning

  • Patcharaprakiti, Nopporn;Tripak, Kasem;Saelao, Jeerawan
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.45-53
    • /
    • 2015
  • This paper is proposed mathematical load modelling based on system identification approach of energy consumption of residential air conditioning. Due to air conditioning is one of the significant equipment which consumes high energy and cause the peak load of power system especially in the summer time. The demand response is one of the solutions to decrease the load consumption and cutting peak load to avoid the reservation of power supply from power plant. In order to operate this solution, mathematical modelling of air conditioning which explains the behaviour is essential tool. The four type of linear model is selected for explanation the behaviour of this system. In order to obtain model, the experimental setup are performed by collecting input and output data every minute of 9,385 BTU/h air-conditioning split type with $25^{\circ}C$ thermostat setting of one sample house. The input data are composed of solar radiation ($W/m^2$) and ambient temperature ($^{\circ}C$). The output data are power and energy consumption of air conditioning. Both data are divided into two groups follow as training data and validation data for getting the exact model. The model is also verified with the other similar type of air condition by feed solar radiation and ambient temperature input data and compare the output energy consumption data. The best model in term of accuracy and model order is output error model with 70.78% accuracy and $17^{th}$ order. The model order reduction technique is used to reduce order of model to seven order for less complexity, then Kalman filtering technique is applied for remove white Gaussian noise for improve accuracy of model to be 72.66%. The obtained model can be also used for electrical load forecasting and designs the optimal size of renewable energy such photovoltaic system for supply the air conditioning.

A Study on the Energy Saving Methods of a House by Passive System (건축적 수법을 통한 주택의 에너지 절약 방안에 관한 연구)

  • 김용식
    • Journal of the Korean housing association
    • /
    • v.13 no.2
    • /
    • pp.73-78
    • /
    • 2002
  • Recently, the energy consumption has been sharply increased and the environmental pollution has been serious, resulted in increased use of fossil fuel. These facts are applied to most fields, and are especially important issues in the field of architecture. The energy consumption rate of building is about 30% of all energy consumption, and the rate of residential is about 20% of the rate of building and is increasing gradually. The purpose of this article is firstly to analyse an actual energy consumption rate of model building and compare it with alternative methods, which are applied passive system to, and secondly to suggest an optimal passive method for saving energy. The conclusion of this study is as follows; 1) As compared with the existing house on actual energy consumption rate, 6% in changing orientation to a south, 9% in using double low-e glazing and 23% in shading is decreased. 2) The change of insulation from 50 to 100mm did not show dramatical difference in energy consumption rate. 3) As changed indoor temperature at 2$0^{\circ}C$ in winter and 27$^{\circ}C$ in summer, the rate shows a reduction of 14% compared with the existing condition.

A Study on the Thermal Comfort Zone and Energy Use of Radiant Floor Heating by Residential Style and Clothing Level (생활특성과 착의량에 따른 바닥복사난방 공간의 열쾌적 범위 및 에너지 사용량에 관한 연구)

  • Kim, Sang-Hun;Chung, Kwang-Seop;Kim, Young-Il
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.24-31
    • /
    • 2015
  • The purpose of this study is to provide the thermal comfort range according to the residential style and clothing level at radiant floor heating space, and compare the annual energy consumption and energy cost for each condition. Lower neutral point temperature has been stood for floor sitting style than chair sitting style, which appears that the thermal sensation was affected by local heat transfer between floor surface and the human body. The result of research indicates that neutral point temperature was in inverse proportion with the clothing level. It is interpreted that the increasing of clothing level results decrement of heat loss from human body, and is available to achieve same thermal comfort at lower room temperature. It was analyzed that the floor sitting style is more economical residential style than the chair sitting style, because the energy consumption of the floor sitting style is saved by 6.0% in average to compare with that of the chair sitting style. It is analyzed that energy consumption has been decreased by 13.5% with the clothing level of 1.2 Clo than with that of 1.0 Clo, and decreased by 18.0% than with that of 0.8 Clo, which explains that the energy saving can be achieved with the variation in life habit to increase the clothing level.

고령화가 가정부문 에너지 소비량에 미치는 영향 분석: 전력수요를 중심으로

  • Won, Du-Hwan
    • Environmental and Resource Economics Review
    • /
    • v.21 no.2
    • /
    • pp.341-369
    • /
    • 2012
  • Population aging has been one of the serious problems in Korea. Aging can affect social and economic features including energy consumption. This paper analyzed how population aging makes an effect on residential electricity demand. Yearly data from 1965 to 2010 were collected. The long and short-run demands for residential electricity were estimated with respect to Korean aging index. The results show that population aging reduces residential electricity demands in the short run significantly, but the effect decreases in the long run. However, population aging still negatively affects residential electricity consumption in long run. If population keep aging as Korean government expected, then the residential electricity demand per capita will grow less than 3%.

  • PDF

Application of LEAP Model to Reduce GHG Emissions from Residential Sector (LEAP 모형을 이용한 가정 부문 온실가스 저감효과 분석)

  • Jo, Mi-hyun;Park, Nyun-Bae;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.4 no.3
    • /
    • pp.211-219
    • /
    • 2013
  • This study uses the LEAP model that is a long-term energy analysis model to analyze reduction potential on S city residential sector energy usage for greenhouse gas emission. Energy consumption of S-si in 2009 is consumed most in residential and commerce sector by 39.1%. Also, energy and greenhouse gas emission of residential sector is expected to increase due to increase of households. Therefore, greenhouse gas reduction measures are desperately required in residential sector. For this study recognizes energy consumption of S-si residential sector and has established reduction measure of S-si residential sector greenhouse gas through literature search on domestic and foreign climate change correspondence policies. Also, construction of greenhouse gas reduction potential by reduction measures through LEAP model. There were a total of 5 reduction measures scenarios is Reference Scenario, LED Lighting, Energy Alternative, Green Life Practice, and Total Reduction Measure. As a result, greenhouse gas emission of Light Emitting Diode Lightings by 2020 was $1,181.0thousand\;tonCO_2eq$, decrease of 6.1% compared to the Reference Scenario and Greenhouse gas emission of Energy Alternative by 2020 was $1,171.6thousand\;tonCO_2eq$, decrease of 6.8% compared to the Reference Scenario. Greenhouse gas emission of Green Life Practice by 2020 was $1,128.7thousand\;tonCO_2eq$, decrease of 10.2% compared to the Reference Scenario. For Total Reduction Measures by 2020 emission was $966.9thousand\;tonCO_2eq$, decrease 23.1% compared to Reference Scenario.