• Title/Summary/Keyword: reservoir simulation

Search Result 422, Processing Time 0.042 seconds

Storage Estimation of Irrigation Reservoir by Water Balance Analysis (물수지 분석을 통한 관개용 저수지의 저수율 추정)

  • Choi, Jin-Kyu;Son, Jae-Gwon;Koo, Ja-Woong;Kim, Young-Ju
    • Journal of Korean Society of Rural Planning
    • /
    • v.9 no.4 s.21
    • /
    • pp.1-7
    • /
    • 2003
  • This study was conducted to seek the effective water management method of the irrigation reservoirs. Joongpyong reservoir was selected for the hydrologic monitoring, and investigated from May in 1999 to December in 2001. The water level and amount of outlet discharge were measured, the stage discharge equation as a rating curve was induced, and which were compared to the irrigation water requirements calculated by a daily simulation model. The water balance of Joongpyong reservoir was analyzed, mainly on the reservoir storage ratio during irrigation period. Comparing the observed storage and simulation data, the results of the simulation were well agreed with the measured data.

The Effect of Current and Temperature of a Reservoir by the Simulation of Dam Outflow (댐 방류조건에 따른 저수지 유속과 수온 영향)

  • Yu, Soon-ju;Ha, Sung-ryong;Jung, Dong-il
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1060-1067
    • /
    • 2006
  • Water quality in the Daecheong reservoir has been deteriorated by algal bloom due to nutrient supply from the upstream of the Daecheong reservoir after heavy rainfall. Algal bloom is propagated from eutrophicated tributary into the main body of the reservoir according to the hydrological conditions. This study is aimed to estimate the water current and temperature effect by the simulation of dam spill flow control using water quality model, CE-QUAL-W2 in 2003. Water current was resulted in nutrient transport from upstream of main reservoir and nutrients were delivered up to downstream by fast water velocity. Algal blooms occurred in stagnate zone of reservoir downstream as the current of downstream was retarded according to dam outflow control. Consequently water balance in stagnate zone triggered a rise of water temperature in summer. It affected algal bloom in the embayment of the reservoir. The simulation result by outflow control scenarios showed that spill flow augmentation induced in water body instability of stagnate zone so that water temperature declined. It could be suggested that outflow control minimize algal bloom in the downstream in the flooding season as long as water elevation level is maintained properly.

The Relationship between Algae Transport and Current in the Daecheong Reservoir (대청호 유속에 따른 조류이동 영향)

  • Yu, Soon-Ju;Hwang, Jong-Yeon;Chae, Min-Hi;Kim, Sang-Yong
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.887-894
    • /
    • 2006
  • Water quality in the Daecheong reservoir has been deteriorated by algal bloom every year. Algal bloom is propagated from eutrophicated tributary into the main body of the reservoir during the wet season. Nutrients from diffuse sources trigger the propagation of the algal bloom. This study is aimed to analyze relationship between the water current by the simulation and algae transport from the main body in the Daecheong reservoir including tributary where algal bloom has occurred seriously every year. Water quality model CE-QUAL-W2 was applied to analyze water movement in draught season (2001) and flooding season (2003). The result of simulation corresponded with the observed water elevation level, 63~80 m and showed stratification of the Daecheong reservoir. In the draught season, as velocity and direction off low in the reservoir was estimated to affect algae transport including nutrient supply from small tributary, algal blooms occurred in the stagnate zone of middle stream of the reservoir. On the other hand, in the flooding season, it was resulted in nutrient transport from upstream of main reservoir and nutrients were delivered up to downstream by fast water velocity. In result, algal blooms occurred in stagnate zone of reservoir downstream as the current of downstream was retarded according to dam outflow control.

Development of agricultural reservoir water supply simulation system (농업용 저수지 용수공급 모의 시스템의 개발)

  • Jun, Sang Min;Kang, Moon Seong;Song, Inhong;Song, Jung-Hun;Park, Jihoon;Kee, Woosuk
    • Journal of Korean Society of Rural Planning
    • /
    • v.20 no.2
    • /
    • pp.103-114
    • /
    • 2014
  • The objective of this study was to develop agricultural reservoir water supply simulation system to assess water cycle of agricultural water district. Developed system was named as ARWS (Agricultural Reservoir Water supply simulation System). ARWS consists of platform and independent modules. In ARWS, reservoir inflow was calculated using Tank model, and agricultural water supply was calculated considering current farming period and mid-summer drainage. ARWS was applied to simulate water level of Gopung and Tapjung reservoir in 2011 - 2012. The results were compared to simulation results of HOMWRS and observed data. Average $R^2$, EI, RMSE of ARWS were 0.76, 0.46, 1.78 (m), average $R^2$, EI, RMSE of HOMRWS were 0.88, -0.14, 2.37 (m) respectively. Considering statistical variances, water level simulation results of ARWS were more similar to observed data than HOMWRS. ARWS can be useful to estimate reservoir water supply and assess hydrological processes of agricultural water district.

A Study on the Determination of Water Storage-Supply Capacity of Agricultural Reservoir (소규모 농업용 저수지의 저류량-용수공급능력 결정에 관한 연구)

  • 안승섭;정순돌;이증석;윤경덕;장인수
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1217-1226
    • /
    • 2002
  • This study aims at the effective estimation of water supply capacity of small scale reservoir and the proposal of the data which is necessary to establish the water resources management plan of down stream area of the reservoir in the future by comparison and examination about reservoir operation technique for the security of agricultural water in small scale reservoir. The result of flow calculation by Tank model is used for the input data as the inflow data which is needed for the analysis of water supply capacity. Stochastic method, simulation method, and optimization method are used to examine the water supply capacity, and water security amount is compared with each method. From the analyses of water supply capacities by each method, slightly different results are shown in spite of the effort to compare them equally using input data such as inflow data under equal conditions, and the comparison of water supply capacities by each method are as follows; linear planning method, simulation method, and transition probability matrix method in the order of amount from the largest. It is thought that the simulation method in which comparatively reasonable application of the inflow data is possible and is simulated in successive time series dam operation of the three methods used in this study thus, simulation model is proper to estimate the water supply capacity of agricultural small scale reservoir. And it is judged that the heightening of efficiency of water resources utilization according to the development of downstream area of dam may be possible using the upward readjusted water supply amount of $55.18{\tiems}10^6ton$ and $63.7{\times}10^6ton$ at 95% and 90% supply reliability respectively which are above the planning water supply amount of $50.0{\times}10^6$ton when the simulation method is introduced as the standard.

Effects on Conservation and Flood Control Systems According In Normal Water Level Change from Daechung Multi-Purpose Reservoir (대청 다목적댐의 상시만수위 변경에 따른 이수 및 치수 영향 검토)

  • Yi, Jae-Eung;Kwon, Dong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.1 s.174
    • /
    • pp.1-10
    • /
    • 2007
  • Reallocation procedure of multipurpose reservoir storage capacity between flood control and conservation is presented as an alternative to secure more water resources. Storage reallocation is an adaptive management mechanism for converting existing normal pool level of reservoirs to more beneficial uses without requirement for physical alteration. This study is intended to develop a reservoir storage reallocation methodology that allows increased water supply storage without minimizing adverse impacts on flood control. The methodology consists of flood control reservoir simulation for inflows with various return periods, flow routing from reservoir to a potential damage site, analyzing river carrying capacity, and reservoir yields estimation for reallocated storages. For the flood control model, a simulation model called Rigid ROM(Reservoir Operation Method) and HEC-5 are used. The approach is illustrated by applying it to two reservoirs system in Geum River basin. Especially with and without new project conditions are considered to analyze trade-offs between competing objectives.

Application of DIROM Model for Water Balance Analysis of Consecutively Linked Reservoir System (이설쌓기 둑높임 저수지의 연계 물수지 분석을 위한 DIROM 모형의 적용성 평가)

  • Lee, Jeongeun;Choi, Jieun;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.5
    • /
    • pp.67-79
    • /
    • 2024
  • Water balance analysis in heightened reservoirs, which have been raised to ensure a stable supply of irrigation water and secure water against floods and heavy rainfall, is essential for evaluating water supply capacity and reservoir maintenance. The consecutively linked reservoir system, which involves preserving the existing embankment while constructing a new one, affects the water balance between the existing and new reservoirs. This study aims to analyze the linked water balance between reservoirs in a consecutively linked reservoir system using the DIROM (Daily Irrigation Reservoir Operation Model) model. Surveys were conducted to investigate actual water use, and multiple water supply quantities were estimated based on these findings. Methods to supplement missing data and improve the limitations of simulated inflow were proposed and applied, and the performance of the daily storage simulation was evaluated. By supplementing the missing water use data, the NSE (Nash-Sutcliffe Efficiency) of the Sonhang reservoir storage rate simulation improved by approximately 30%. Additionally, result of using inflow coefficients significantly enhanced the simulation performance for the Sonhang2 and Sonhang reservoirs. This study confirms the necessity of incorporating appropriate inflow coefficients in reservoir design to overcome the model's tendency to overestimate inflow, highlighting the critical importance of quality control in observational data. The findings are expected to be useful for the design and analysis of future reservoir systems through embankment heightening.

Analysis of Small reservoir system by Flood control ability augmentation (치수능력 증대에 따른 저수지시스템 분석)

  • Park Ki-Bum;Lee Soon-Tak
    • Journal of Environmental Science International
    • /
    • v.14 no.11
    • /
    • pp.995-1004
    • /
    • 2005
  • As a research establish reservoir safety operation for small dam systems. This study presents hydrologic analysis conducted in the Duckdong and Bomun dam watershed based on various rainfall data and increase inflow. Especially the Duckdong dam without flood control feature are widely exposed to the risk of flooding, thus it is constructed emergency gate at present. In this study reservoir routing program was simulation for basin runoff estimating using HEC-HMS model, the model simulation the reservoir condition of emergency Sate with and without. At the reservoir analysis results is the Duckdong dam average storage decrease $20\%$ with emergency gate than without emergency gate. Also, the Bomun dam is not affected by the Duckdong flood control augmentation.

Water Quality Simulation of the Reservoir Using Ecological Model

  • Kim, Dong-Myung;Suk, Ji-Won;Kim, Sun-Young;Shin, Sang-Ik;Roh, Kyong-Joon
    • Journal of Environmental Science International
    • /
    • v.23 no.10
    • /
    • pp.1755-1762
    • /
    • 2014
  • Water quality of the Koejong-reservoir was estimated by using the ecological model to evaluate the effects of industrial sewage discharge. State variables consist of POC, DOC, phytoplankton, DIP, DIN, DO and COD. Initial conditions for the compartment are applied to the model based on the observed results. The reproducibility was found to be satisfactory with the relative error ranging between the calculated value and the observed value. Water quality simulation was conducted by applying additional industrial sewage discharge into the Koejong-reservoir. The concentrations of COD, Chl.a, DIP and COD showed fluctuations of a narrow range. The increment percentages of Chl.a, COD and DIP were 26.6%, 20.2% and 18.2%, respectively. In the case of DO, the concentration decreased 4.8%.

Agricultural Reservoir Operation Analysis According to Surveyed Irrigation Guideline (현장조사 관개 기준에 따른 농업용 저수지 운영 분석)

  • Kim, Maga;Choi, Jin-Yong;Bang, Jehong;Yoon, Pu Reun;Kim, Kwihoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.5
    • /
    • pp.37-49
    • /
    • 2023
  • The drought risk has been increasing recently due to climate change causing the extreme climate to be more frequent. In order to supply agricultural water stably under drought, it is necessary to operate an agricultural reservoir in response to drought. To this end, it is crucial to establish appropriate drought response operation rules considering weather conditions and reservoir status. In the reservoir operation simulation, the supply amount differs from the actual reservoir supply for many reasons, including maintaining water levels for supply and accommodating farmers' requests. So, for a more realistic reservoir operation simulation, it is necessary to reflect the reservoir operation rules of the actual water management site. Therefore, in this study, through a survey, the standards for limitation of agricultural water supply applied to agricultural reservoirs in Korea were investigated, and the criteria for drought response reservoir operation (DRO) were established based on the survey. Then, the DRO was applied to the irrigation period for nine subject reservoirs. The applicability was evaluated by comparing the DRO result to the operation result of HOMWRS (Hydrological Operation Model for Water Resources System). The reservoir drought index, storage rate, and daily supply were compared for evaluation. From the result, DRO showed more stable operation results in most cases against drought as it has fewer days of water supply limitation and a somewhat reservoir storage rate which can be utilized for prolonged drought.