• Title/Summary/Keyword: reservoir level

Search Result 560, Processing Time 0.036 seconds

Simulation of Mixing Transport on Inner Reservoir and Influence Impacts on Outer Region for the Saemankeum Effluents Caused by Gate Operation (새만금호 수문 개방에 따른 내측의 혼합수송 및 외해역의 방류영향모의)

  • Suh Seung-Won;Cho Wan-Hei;Yoo Gyeong-Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.1
    • /
    • pp.43-52
    • /
    • 2006
  • Numerical model tests are done in order to evaluate impact zone of low salinity water on outer region of the developing Saemankeum reservoir. Also saline mixing processes are investigated f3r the inner reservoir with consideration of Mankyoung and Donjin riverine flood discharges when sea water is passing freely through gate. In these analyses 2-d ADCIRC, 3-d TIDED3D and CE-QUAL-ICM models are used. Through models tests, it is found that inner reservoir mixing process caused by inflow of outer sea water occurs gradually. It takes at least one month for complete mixing on Mankyoung part and 6 month on Dongjin part of the reservoir. When Sinsi or Garyeok gates are opened to control inner reservoir level, discharging velocities decrease exponentially from the gates, but show very strong currents of 0.5m/sec to the 10Km region apart. These results imply that hydrodynamic circulation and ecosystem of frontal region of the Saemankeum dike might be affected in amount by gate operations, since low saline inner waters are discharged periodically at ebb tide according to tidal level.

Development of Model for Simulating Daily Water Storage in Estuary Barrage Dam (하구둑의 일 물수지 모형 개발)

  • Noh, Jae-Kyoung;Lee, Hang-Sik;Jin, Yong-Shin
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.495-498
    • /
    • 2003
  • In order to analyze water supply capacity in estuary barrage dam, a system was developed in which base model was consisted of daily water balance model and daily inflow model. Agricultural water demand to paddy fields and domestic and industrial water demand were considered in this daily water balance model. Also outflow volume through sluice gate and inside water level at time to start outflow was conditioned initially to simulate reservoir storage. The DAWAST model was selected to simulate daily reservoir inflow in which return flows from agricultural, domestic and industrial water were included to simulate runoff. Using this developed system, water supply capacity in the Keum river estuary reservoir was analyzed.

  • PDF

SHIHMEN SEDIMENT PREVENTION DIVERSION TUNNEL PLANNING AND DESIGN

  • Ho-Shong Hou;Ming-Shun Lee;Percy Hou
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.168-172
    • /
    • 2009
  • Shihmen reservoir was started in May 1963. The main purposes of Shihmen reservoir are for agriculture, power supply, flood control and tourism. Shihme Asn dam is an earth dam. Its crown height is 133m above mean sea level, with length 360 m, watershed 763.4 km2, and maximum volume 309 million cms. Turbidity in Shihmen dam was severely affected by typhoons Aere (2004) and Masa (2005). Increased deposition after Aere was 28 million cms. Turbidity at Shihmen Canal Inlet is 3000 NTU (Nephelometry Turbidity Unit). Sediment sluicing strategies for downstream channel are demanded. Therefore, diversionary sediment preventing channel is planned in the upstream of Shihmen reservoir. Finally, turbid flow in tunnel channel is bypassed and diverted its flow down to downstream.

  • PDF

Monitoring of Nitrogen and Phosphorus from Submerged Plants in Boknae Reservoir around Juam Lake (주암호 복내 저수구역내 침수 자생식물의 질소 및 인 모니터링)

  • Kang, Se-Won;Seo, Dong-Cheol;Lee, Sang-Gyu;Seo, Young-Jin;Park, Ju-Wang;Choi, Ik-Won;Park, Jong-Hwan;Lim, Byung-Jin;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.1
    • /
    • pp.9-16
    • /
    • 2013
  • BACKGROUND: Eutrophication occurs occasionally in reservoirs around lake in summer and early autumn. Lakeside macrophyte which is one of internal pollutants effects on water quality when it is submerged during rainy season. To improve water quality of water supply source in Boknae reservoir around Juam lake, characteristics of nutrient(N, P) uptake and release by submerged plants were investigated. METHODS AND RESULTS: In order to establish the management plan of submerged plants in Boknae reservoir around Juam lake, water level, rainfall, flooding and non-flooding areas, biomass of dominant plants, contents of nitrogen and phosphorus were investigated during 7 months(August, 2010 through February, 2011). Dominant plants were Miscanthus sacchariflorus(MISSA) and Carex dimorpholepis(CRXDM) in Boknae reservoir. Total plant area of Boknae reservoir in August, 2010 was 987,872 $m^2$. In Boknae reservoir, flooding occurred from August until February caused by rainfall during rainy season. The total amounts of nitrogen and phosphorus uptakes by MISSA were 247 and 22 kg/total reservoir area, respectively. By CRXDM, the total amounts of nitrogen and phosphorus uptakes were 11,340 and 1,231 kg/total reservoir area, respectively. The total amounts of nitrogen and phosphorus residues by MISSA were 34 and 11 kg/total reservoir area, respectively. By CRXDM, the total amounts of nitrogen and phosphorus residues were 491 and 68 kg/total reservoir area, respectively. CONCLUSION(S): Total amounts of nitrogen and phosphorus releases in Boknae reservoir were 12,212 and 1,324 kg/total reservoir area, respectively. The results demonstrate that total nitrogen and total phosphorus in water were strongly influenced by submerged plants. Therefore, management plan for submerged plants during rainy season will be needed to improve water quality of water supply source in Boknae reservoir around Juam lake.

Fuzzy Optimal Reservoir Operation Considering Abnormal Flood (이상홍수를 고려한 퍼지 최적 저수지 운영)

  • Choi, Changwon;Yu, Myung Su;Yi, Jaeeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4B
    • /
    • pp.221-232
    • /
    • 2012
  • In this study, the model enhancing the safety of reservoirs and reducing the downstream flood damage by reservoirs system operation during abnormal flood was developed. Linear programming was used for the optimal reservoirs system operation during an abnormal flood and fuzzy inference system was introduced to solve the uncertainty problem which is included in hydrological factors like inflow, water level and inflow variation of reservoir operation. The linear programming model determined the optimal reservoir system operation rules and could be used in situation where water demands varies rapidly during the abnormal flood events using fuzzy control technique. In this study, the optimal reservoirs system operation for Andong and Imha reservoirs located in the upper basin of Nakdong river was performed in order that the design flood discharge at Andong city would not be exceeded for the design flood of 100 year and PMF(Probable Maximum Flood). And the model that determines the release according to the downstream flow discharge, the reservoir storage, the inflow and the inflow variation of each reservoir was developed using the optimal system operation result and fuzzy control technique. The developed model consisted of 224 fuzzy rules according to the conditions of Andong reservoir, Imha reservoir and Andong city. And the release from each reservoir could be determined when the current data are used as input data through the developed GUI.

Absorption of Copper(Cu) by Vegetation on Reservoir Sediment Exposed after Drawdown (저수위시 노출된 저수지 저니 상의 식생과 구리(Cu)의 흡수)

  • 이충우;차영일
    • Journal of Environmental Science International
    • /
    • v.2 no.2
    • /
    • pp.123-133
    • /
    • 1993
  • Shingal reservoir is a relatively small (211ha) and shallow impoundment, and approximately 25 ha of its sediment is exposed after spring drawdown. At least 14 vascular p13n1 species germinate on the exposed sediment, but Persimria vulgaris Webb et Moq. quickly dominates the vegetation. In order to estimate the role of the vegetation in the dynamics of heavy metal pollutants in the reservoir, Cu concentration of water, fallout particles, exposed sediment, and tissues of p. vulgaris, Ivas analyzed. Cu content in reservoir water decreased from $13.10mg/m^2$ on May 15 (before dralvdown) to $3.08mg/m^2$ in June 1 (after drawdown), mainly due to the loiwering of water level. Average atmospheric deposition of Cu by fallout particles was $10.84 {\mu}g/m^2/day$. Cu content in the surface 15cm of exposed sediment decreased from $5.094g1m^2$ right after drawdown, to $0.530g/m^2$ in 41 days, which is a 89.6% decrease. Therefore up to 99.7% of Cu in the reservoir appears to exist in the sediment. only 0.3% in water If the rate of atmospheric Input by fallout particles is assumed to have been the same since 1958, when the reservoir was completed, cumulative input of Cu during the 38 years would have been $150.35mg/m^2$, which is only 3.0% of Cu content in sediment right after drawdown. Therefore, most of Cu in the Shingal reservoir must have been transported by the Shingal-chun flowing into the reservoir, Standing crop of vegetation on the exposed sediment 41 days after drawdown was $730.67g/m^2$, of which 630.91g/m2 was p. vulgaris alone, and Cu content in P vulgaris at this time was $6.612mg/m^2$. This was only 0.13% of Cu in the exposed sediment, but was 50.5% of Cu in water before drawdown, or 167% of the average annual input of Cu by atmospheric deposition. If other plants were assumed to absorb Cu to the same concentration as p. vulgaris, total amount of Cu absorbed in 41 days by vegetation on the exposed sediment is estimated to be 1913.3 g, which is a considerable contribution to the purification of the reservoir water.

  • PDF

Absorption of Copper(Cu) by Vegetation on Reservoir Sediment Exposed after Drawdown (저수위시 노출된 저수지 저니 상의 식생과 구리(Cu)의 흡수)

  • Lee, Chung-U;Cha, Yeong-Il
    • Journal of Environmental Science International
    • /
    • v.2 no.2
    • /
    • pp.29-29
    • /
    • 1993
  • Shingal reservoir is a relatively small (211ha) and shallow impoundment, and approximately 25 ha of its sediment is exposed after spring drawdown. At least 14 vascular p13n1 species germinate on the exposed sediment, but Persimria vulgaris Webb et Moq. quickly dominates the vegetation. In order to estimate the role of the vegetation in the dynamics of heavy metal pollutants in the reservoir, Cu concentration of water, fallout particles, exposed sediment, and tissues of p. vulgaris, Ivas analyzed. Cu content in reservoir water decreased from $13.10mg/m^2$ on May 15 (before dralvdown) to $3.08mg/m^2$ in June 1 (after drawdown), mainly due to the loiwering of water level. Average atmospheric deposition of Cu by fallout particles was $10.84 {\mu}g/m^2/day$. Cu content in the surface 15cm of exposed sediment decreased from $5.094g1m^2$ right after drawdown, to $0.530g/m^2$ in 41 days, which is a 89.6% decrease. Therefore up to 99.7% of Cu in the reservoir appears to exist in the sediment. only 0.3% in water If the rate of atmospheric Input by fallout particles is assumed to have been the same since 1958, when the reservoir was completed, cumulative input of Cu during the 38 years would have been $150.35mg/m^2$, which is only 3.0% of Cu content in sediment right after drawdown. Therefore, most of Cu in the Shingal reservoir must have been transported by the Shingal-chun flowing into the reservoir, Standing crop of vegetation on the exposed sediment 41 days after drawdown was $730.67g/m^2$, of which 630.91g/m2 was p. vulgaris alone, and Cu content in P vulgaris at this time was $6.612mg/m^2$. This was only 0.13% of Cu in the exposed sediment, but was 50.5% of Cu in water before drawdown, or 167% of the average annual input of Cu by atmospheric deposition. If other plants were assumed to absorb Cu to the same concentration as p. vulgaris, total amount of Cu absorbed in 41 days by vegetation on the exposed sediment is estimated to be 1913.3 g, which is a considerable contribution to the purification of the reservoir water.

Evaluation of estuary reservoir management based on robust decision making considering water use-flood control-water quality under Climate Change (이수-치수-수질을 고려한 기후변화 대응 로버스트 기반 담수호 관리 평가)

  • Kim, Seokhyeon;Hwang, Soonho;Kim, Sinae;Lee, Hyunji;Kwak, Jihye;Kim, Jihye;Kang, Moonseong
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.6
    • /
    • pp.419-429
    • /
    • 2023
  • The objective of this study was to determine the management water level of an estuary reservoir considering three aspects: the water use, flood control and water quality, and to use a robust decision-making to consider uncertainty due to climate change. The watershed-reservoir linkage model was used to simulate changes in inflow due to climate change, and changes in reservoir water level and water quality. Five management level alternatives ranging from -1.7 El.m to 0.2 El.m were evaluated under the SSP1, 2, 3, and 5 scenariosof the ACCESS-CM2 Global Climate Model. Performance indicators based on period-reliability were calculated for robust decision-making considering the three aspects, and regret was used as a decision indicator to identify the alternatives with the minimum maximum regret. Flood control failure increased as the management level increased, while the probability of water use failure increased as the management level decreased. The highest number of failures occurred under the SSP5 scenario. In the water quality sector, the change in water quality was relatively small with an increase in the management level due to the increase in reservoir volume. Conversely, a decrease in the management level resulted in a more significant change in water quality. In the study area, the estuary reservoir was found to be problematic when the change in water quality was small, resulting in more failures.

Application of CE-QUAL-W2 [v3.2] to Andong Reservoir: Part II: Simulations of Chlorophyll a and Total Phosphorus Dynamics

  • Ram, Bhattarai Prasid;Kim, Yoon-Hee;Kim, Bom-Chul;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.472-484
    • /
    • 2008
  • The calibrated Andong Reservoir hydro-dynamic module (PART I) of the 2-dimensional hydrodynamic and water quality model, CE-QUAL-W2 [v3.2], was applied to examine the dynamics of total phosphorus, and chlorophyll $\alpha$ concentration within Andong Reservoir. The modeling effort was supported with the data collected in the field for a five year period. In general, the model achieved a good accuracy throughout the calibration period for both chlorophyll ${\alpha}$ and total phosphorus concentration. The greatest deviation in algal concentration occurred on $10^{th}$ October, starting at the layer just beneath the surface layer and extending up to the depth of 35 m. This deviation is principally attributed to the effect of temperature on the algal growth rate. Also, on the same date, the model over-predicts hypolimnion and epilimnion total phosphorus concentration but under-predicts the high concentrated plume in the metalimnion. The large amount of upwelling of finer suspended solid particles, and re-suspension of the sediments laden with phosphorus, are thought to have caused high concentration in the epilimnion and hypolimnion, respectively. Nevertheless, the model well reproduced the seasonal dynamics of both chlorophyll a and total phosphorus concentration. Also, the model tracked the interflow of high phosphorus concentration plume brought by the turbid discharge during the Asian summer monsoon season. Two different hypothetical discharge scenarios (discharge from epilimnetic, and hypolimnetic layers) were analyzed to understand the response of total phosphorus interflow plume on the basis of differential discharge gate location. The simulated results showed that the hypolimnetic discharge gate operation ($103{\sim}113\;m$) was the most effective reservoir structural control method in quickly discharging the total phosphorus plume (decrease of in-reservoir concentration by 219% than present level).

Assessment of Economic Value of Sangkwan Multi-Purpose Reservoir (II): Benefits of Recreational Water (상관 다기능 저류지 조성의 경제적 편익 평가(II): 레크리에이션용수 공급편익을 중심으로)

  • Lee, Joo-Suk;Ryu, Moon-Hyun;Yoo, Seung-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.10
    • /
    • pp.997-1004
    • /
    • 2013
  • There is imminent need to find a way to measure the recreational benefits of water so that appropriate actions can be taken to make a multi-purpose reservoir. Therefore, this study attempts to apply a choice experiment to quantifying the recreational benefits of a multi-purpose reservoir, using a specific case study of Sangkwan multi-purpose reservoir. We consider the trade-offs between price and attributes of recreational attributes for selecting a preferred alternative and derive the marginal willingness to pay (MWTP) estimate for each attribute. The results show that the MWTP for providing additional 10,000 ton of water is estimated to be 3 won per household per year. The MWTP for improving 1 level of water quality is computed to be 645.5 won per household per year. Moreover, the MWTP for providing recreation facilities is calculated to be 1,518.6 won per household per year. This study allows us to provide policy-makers with useful quantitative information that can reduce uncertainty in the decision-making process related to a multi-purpose reservoir construction projects.