• 제목/요약/키워드: reservoir basin deformation

검색결과 4건 처리시간 0.017초

Deformation and stress behavior analysis of high concrete dam under the effect of reservoir basin deformation

  • Zheng, Dongjian;Xu, Yanxin;Yang, Meng;Gu, Hao;Su, Huaizhi;Cui, Xinbo;Zhao, Erfeng
    • Computers and Concrete
    • /
    • 제18권6호
    • /
    • pp.1153-1173
    • /
    • 2016
  • According to deformation data measured in some high concrete dams, for dam body deformation, there is a complex relationship with dam height and water head for different projects, instead of a simple monotonic relationship consistently. Meanwhile, settlement data of some large reservoirs exhibit a significant deformation of reservoir basin. As water conservancy project with high concrete dam and large storage capacity increase rapidly these decades, reservoir basin deformation problem has gradually gained engineers' attentions. In this paper, based on conventional analytical method, an improved analytical method for high concrete dam is proposed including the effect of reservoir basin deformation. Though establishing FEM models of two different scales covering reservoir basin and near dam area respectively, influence of reservoir basin on dam body is simulated. Then, forward and inverse analyses of concrete dam are separately conducted with conventional and proposed analytical methods. And the influence of reservoir basin deformation on dam working behavior is evaluated. The results of two typical projects demonstrate that reservoir basin deformation will affect dam deformation and stress to a certain extent. And for project with large and centralized water capacity ahead of dam site, the effect is more significant than those with a slim-type reservoir. As a result, influence of reservoir basin should be taken into consideration with conducting analysis of high concrete dam with large storage capacity.

An approach for deformation modulus mechanism of super-high arch dams

  • Wu, Bangbin;Niu, Jingtai;Su, Huaizhi;Yang, Meng;Wu, Zhongru;Cui, Xinbo
    • Structural Engineering and Mechanics
    • /
    • 제69권5호
    • /
    • pp.557-566
    • /
    • 2019
  • The reservoir basin bedrock produced significant impact on the long-term service safety of super-high arch dams. It was important for accurately identifying geomechanical parameters and its evolution process of reservoir basin bedrock. The deformation modulus mechanism research methods of reservoir basin bedrock deformation modulus for super-high arch dams was carried out by finite element numerical calculation of the reservoir basin bedrock deformation and in-situ monitoring data analysis. The deformation modulus inversion principle of reservoir basin bedrock in a wide range was studied. The convergence criteria for determining the calculation range of reservoir basin of super-high arch dams was put forward. The implementation method was proposed for different layers and zones of reservoir basin bedrock. A practical engineering of a super-high arch dam was taken as the example.

AN OBSERVATION ON THE FRACTURE SYSTEMS OF THE SOUTHERN VIETNAM

  • Chang Sung Jin;Long Nguyen Tien
    • 한국석유지질학회:학술대회논문집
    • /
    • 한국석유지질학회 2001년도 제8차 학술발표회 발표논문집
    • /
    • pp.6-22
    • /
    • 2001
  • A study of the fracture systems in outcrops of southern onshore Vietnam revealed two kinds of fracture groups according to their origin: cooling fractures and deformation related fractures. Cooling of magma introduced extensive fractures in the batholiths with wide spacing and narrow aperture. They are found widespread in all magmatic bodies, but result in poor reservoir quality due to low bulk porosity and narrow aperture. Cooling fractures are often reactivated during later stress regimes. Deformation related fractures, especially 'fault damage zones' and 'hanging wall deformation' is thought to form the most important reservoir type in the fractured basement rock. The porosity formed by intense fracturing and fault breccia along minor fault zones is thought to be the producing zones in the producing fields of Cuu Long basin. They are found along major faults and widespread in hanging wall blocks.

  • PDF

CCHE1D 모형을 이용한 저수지 붕괴에 따른 하상변동 해석 (Numerical Analysis of River Bed Change Due to Reservoir Failure Using CCHE1D Model)

  • 손인호;김병현;손아롱;한건연
    • 대한토목학회논문집
    • /
    • 제36권2호
    • /
    • pp.219-229
    • /
    • 2016
  • 본 연구에서는 저수지의 붕괴로 인한 하류부 하천의 하상변동에 대한 해석을 수행하였다. 저수지 붕괴에 따른 1차원 비평형, 비균일 유사의 이송과 하상 변동을 연구를 위해 CCHE1D 모형을 이용하였다. CCHE1D 모형은 비평형 및 비균일 유사해석을 위해 조정거리와 분류된 입자의 입경을 사용하며, 하상 물질의 교환을 위한 혼합층의 개념이 사용된다. CCHE1D 모형을 1996년 저수지 붕괴가 발생한 Ha!Ha!강 유역에 적용하여 저수지 붕괴로 인한 하류부의 비평형, 비균일 유사이송을 해석하고, 계산 결과를 저수지 붕괴전 후에 하류부 실측 하상과 비교하였다. 또한, 조정계수($L_{s,b}$), 비평형 계수(${\alpha}_s$), 혼합층 두께(${\delta}_m$), 공극률(p')을 포함하는 주요 매개변수에 대한 민감도를 분석하였으며, 대상유역에서는 비평형 계수가 하상변동에 가장 큰 영향을 주는 것으로 나타났다.