• Title/Summary/Keyword: reserves of gold

Search Result 13, Processing Time 0.02 seconds

The Transition of Production, Consumption and Price of Non-ferrous Metals (비철금속(非鐵金屬)의 생산(生産), 소비(消費), 시세(時勢)의 추이(推移))

  • Moon, W.J.
    • Economic and Environmental Geology
    • /
    • v.2 no.3
    • /
    • pp.1-25
    • /
    • 1969
  • In considering the mining industry, it is necessary to study the production, consumption and price of ore and metals in every country of the world in order to determine the trend of the industry in the present and for the future. This study is necessary especially for exporting domestically produced are which is in excess of domestic consumption and for importing are, or metal where local production does not meet domestic demand. It will be treated of Au, Ag, Cu, Pb, Zn, W, Mo, which are the most important non-ferrous metals, and which greatly affect the mining industry of Korea. The presentation will concern itself only with the free world. About 1, 200 ton of gold are produced annually with little fluctiation in recent years. Most of the gold produced is consumed by advanced countries for industrial uses as well as for producing precious objects. The U.S.A. expends yearly about four times its domestic production and Japan about three times its domestic production for industry and arts. Because of the instability of the currency of the U.S.A., England and France, recently, the price of gold has been $ 41-42 per ounce, whereas the official price is $35.00 per ounce. It will be expected that the official price will be raised in the near future. As for silver, about 6,500 tons are produced annually with no special fluctuation change in recent years. However, the annual consumption is about 14,000 ton, so the supply and demand is extremely unbalanced. The shortage is made up by the sale of the U.S. treasury's reserve stock and the reclaiminig of silver from coins and other scrap. As the Treasury'S reserves will be exhausted in a year or two, the price of silver which is $1. 64 per ounce, will go up drastically in about a year. As for copper, 5,257,000 ton's were mined in 1966. It's production is being increased about 5% annually. However, consumption exceeds production by about 100,000 ton a year. The recent Foreign refinery copper price in the U.S.A is $ 60 per pound. The supply of copper being insufficient to meet international demands, the price will go up and with no prospect of being lowered in the near future even with the slight annual increase in production. About 2,100,000 to 2,200,000 tons of lead are produced annually. Consumption exceeds production by about 50,000-60,000 tons annually. The current price of lead in New York is $ 155 per pound. As the supply of lead is internationally stable, It will be believed that there will be no significant change in its price in the near future. In 1967, 3,926,000 tons of Zinc were produced. There is annual increase of 4-7% in production. The annual consumption exceeds production by 100,000 to 200,000 tons. The current zinc price in the St. Louis market inthe U.S.A. is $ 145 per pound. Even though its supply is stable and sufficient world wide, the consumption rate will increase at a faster pace than before; hence, the price will slowly go up. Tungsten mines yield about 11,000 tons a year. Its production has been relatively constant in the past few years. The amount of its consumption increases slowly world wide, but in the free world· there has been a slight annual decrease. However, since Red China has not been exporting their tungsten to other countries for several months, the price on the London market of S.T.U. of $Wo_3$ has increased to $ 44~46. Should Red China begin to export actively again the price will drop to $ 40~42. In 1967, 56,000 tons of Molybdenum were produced. Production exceeds consumption by 200,000 -30,000 tons annually. The current price in the U.S.A. is $ 1.72 per Mo pound. Since the rate of production in the U.S.A. is on the increase with large amounts of ore reserve, the price of molubdenum should not go up.

  • PDF

Structural Constraints on Gold-Silver-Bearing Quartz Mineralization in Strike-slip Fault System, Samkwang Mine, Korea (삼광광산에서의 주향이동단층에 의한 함금-은 석영맥에 대한 구조규제)

  • Lee, Hyun Koo;Yoo, Bong-Cheal;Hong, Dong Pyo;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.579-585
    • /
    • 1995
  • The Samkwang mine is Cretaceous gold-silver-bearing deposits located in the western part of the Ogcheon belt The ore deposits have been emplaced within granite gneiss of the Precambrian age. The Au-Ag deposits are hydrothermal-vein type, characterized by arsenic-, gold- and silver-bearing sulphides, in addition to the principal ore-forming sulphides arsenopyrite, galena, sphalerite, chalcopyrite, pyrite and pyrrhotite. Their proven reserves are 355,000 MT, and grades are 8.4 g Au/t and 13.6 g Ag/t. On the basis of their structural characters, the Au-Ag-bearing quartz veins are classified into three types of ore veins; (1) The Main vein shows $N40^{\circ}-80^{\circ}E$ strike and $55^{\circ}-90^{\circ}SE$ dip, (2) the Sangban vein shows E-W strike and $30^{\circ}-40^{\circ}S$ dip, and (3) the Gukseong vein has $N25^{\circ}-40^{\circ}W$strike and $65^{\circ}-80^{\circ}SW$ dip. The emplacements of the ore veins are closely related to the minimum stress axis $({\sigma}_3)$ during the strike-slip movement of the study area. The ore-bearing veins filled with extension fractures during strike-slip movements were sequentially emplaced as follows: I) When ${\sigma}_1$ operates obliquely to NE-series discontinous surface, the Main fault zone $(F_1)$ developes. 2) During the same time, extension fractures ($T_1$ Gukseong veins) take place. 3) When the fault progress continuously, the existing $T_1$, may be high angle and $T_2$ (Daehung vein) developes continuously. 4) When ${\sigma}_1$ changes to sinistral sense, $T_3$ (basic dyke) occurs. 5) When a reverse fault becomes active, the Sangban vein is branched from the Guksabong vein.

  • PDF

Alteration and Mineralization in the Xiaoxinancha Porphyry Copper Deposit, Yianbin, China: Fluid Inclusion and Sulfur Isotope Study (중국 연변 쇼시난차 반암동 광상의 광화작용 및 변질작용: 유체포유물 및 황동위원소 연구)

  • Seong-Taek Yun;Chil-Sup So;Bai-Lu Jin;Chul-Ho Heo;Seung-Jun Youm
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.211-220
    • /
    • 2002
  • The Xiaoxinancha Cu-Au deposit in the Jilin province, located in NNE 800 km of Beijing, is hosted by diorite. The ore mineralization of Xiaoxinancha Cu-Au deposit show a stockwork occurrence that is concentrated on the potassic and phyllic alteration zones. The Xiaoxinancha Cu-Au deposit in the south is being mined with its reserves grading 0.8% Cu, 3.64 g/t Au and 16.8 g/t Ag and in the north, grading 0.63% Cu, 3.80 g/t Au and 6.8 glt Ag. The alteration assemblage occurs as a supergene blanket over deposit. Hydrothermal alteration at the Xiaoxinancha Cu-Au deposit is centered about the stock and was extensively related to the emplacement of the stock. Early hydrothermal alteration was dominantly potassic and followed by propylitic alteration. Chalcocite, often associated with hematite, account for the ore-grade copper, while chalcopyrite, bornite, quartz, epidote, chlorite and calcite constitute the typical gangue assemblage. Other minor opaque phases include pyrite, marcasite, native gold, electrum, hessite, hedleyite, volynskite, galenobismutite, covellite and goethite. Fluid inclusion data indicate that the formation of this porphyry copper deposit is thought to be a result of cooling followed by mixing with dilute and cooler meteoric water with time. In stage II vein, early boiling occurred at 497$^{\circ}$C was succeeded by the occurrence of halite-bearing type III fluid inclusion with homogenization temperature as much as 100$^{\circ}$C lower. The salinities of type 1II fluid inclusion in stage II vein are 54.3 to 66.9 wt.% NaCI + KCI equiv. at 383$^{\circ}$ to 495$^{\circ}$C, indicating the formation depth less than 1 km. Type I cupriferous fluids in stage III vein have the homogenization temperatures and salinity of 168$^{\circ}$ to 365$^{\circ}$C and 1.1 to 9.0 wt.% NaCI equiv. These fluid inclusions in stage III veins were trapped in quartz veins containing highly fractured breccia, indicating the predominance of boiling evidence. This corresponds to hydrostatic pressure of 50 to 80 bars. The $\delta$$^{34}S$ value of sulfide minerals increase slightly with paragenetic time and yield calculated $\delta$$^{34}S_{H2S}$ values of 0.8 to 3.7$\textperthousand$. There is no mineralogical evidence that fugacity of oxygen decreased, and it is thought that the oxygen fugacity of the mineralizing fluids have been buffered through reaction with magnetite. We interpreted the range of the calculated $\delta$$^{34}S_{H2S}$ values for sulfides to represent the incorporation of sulfur from two sources into the Xiaoxinancha Cu-Au hydrothermal fluids: (1) an isotopically light source with a $\delta$$^{34}S$ value of I to 2$\textperthousand$, probably a Mesozoic granitoid related to the ore mineralization. We can infer from the fact that diorite as the host rock in the Xiaoxinancha Cu-Au deposit area intruded plagiogranite; (2) an isotopically heavier source with a $\delta$$^{34}S$ value of > 4.0$\textperthousand$, probably the local porphyry.