• Title/Summary/Keyword: reserpine

Search Result 92, Processing Time 0.027 seconds

The Usefulness of the 24hrs Urine 17-KS.17-OHCS as an Index for the Differentiation of Deficiency Syndrome of the Kidneys in Stroke Patient (뇌졸중 환자의 신허 진단 지표로서 24시간 요중 17-KS, 17-OHCS의 유용성에 대한 검토)

  • 노기환;조기호;문상관;고창남;김영석;배형섭;이경섭
    • The Journal of Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.94-101
    • /
    • 2001
  • Background and Purpose : Relationship between 17-KS.17-OHCS in 24hrs urine and Deficiency Syndrome of the Kidneys had been examined, but the study about 17-KS.17-OHCS in stroke patients was rare6'. In this study, we aimed to investigate the usefulness of 24hrs urine 17-KS.17-OHCS in stroke patients as an index for the Differentiation of Deficiency Syndrome of the Kidneys. Subjects : 66 stroke patients(male : female =2 9 : 37) were selected, they were admitted in the hospital of oriental medicine, Kyunghee university(from November 1 st, 1998 to May 30th, 2000). Their age was over 65 years. The patients who had renal malfunction, hyperthyroidism, hypothyroidism were excluded and who took chlorpromazine, spironolactone, digoxin, reserpine, hormonal agent were also excluded. Methods : After we selected the patients, we investigated the Differentiation of Syndrome by use of Diagnostic Paper and examined the level of 17-KS.17-OHCS in 24hrs urine. We compared Deficiency Syndrome with non-Deficiency Syndrome of the Kidneys using of 17-KS.17-OHCS in 24hrs urine. Results : 1. Stroke did not affect 17-KS.17-OHCS excretion in 24hrs urine. 2. In 24hrs urine, 17-KS of male stroke patients and 17-OHCS of female stroke patients were lower in patients diagnosed as a Deficiency Syndrome than non-Deficiency Syndrome of the Kidneys(p<0.05). 3. Among Deficiency Syndrome of Yin, Yang, Yang and Yin of the Kidneys group, there was no differentiation of 17-KS.17-OHCS in 24hrs urine(p>0.05).

  • PDF

Studies on Sympathetic Innervation of the Jejunum in the Chick (병아리 공장(空腸)의 교감신경지배(交感神經支配)에 관한 연구(硏究))

  • Lee, Chang Eop
    • Korean Journal of Veterinary Research
    • /
    • v.14 no.1
    • /
    • pp.33-40
    • /
    • 1974
  • It has been generally understood that the intestinal tracts are under the control of the autonomic nerves; the parasympathetics are excitatory and the sympathetics inhibitory. However, it is recently reported that the actions of these autonomic nerves in the newborn animals are shown to be different from those in the adult animals in some species. In order to elucidate the role of sympathetic innervation to the intestinal tracts, the effects of periarterial nerve stimulation were studied in the periarterial sympathetics-jejunum preparations of the chick and the effects of some autonomic drugs on the isolated muscle strips were also studied. The results obtained were as follows: 1. The periarterial stimulation in the periarterial sympathetics-jejunum preparation elicited the responses of three patterns; 1) contrcation followed by relaxation 2) contraction only 3) relaxation only. The excitatory response was most effective in the stimulus frequencies of 40 cps, whereas the inhibitory response was maximal in the stimulus frequencies of 30 cycle per second. 2. The excitatory response to the periarterial stimulation was not affected by the pretreatment with phenoxybenzamine, dibenamine, propranolol and atropine, whereas the inhibitory response was completely blocked by the pretreatment with phenoxybenzamine and propranolol. 3. In the periarterial syrnpathetics-jejunum preparation treated with reserpine, the periarterial stimulation evoked only contraction, and the contraction was not affected by the pretreatment with phenoxybenzamine, propranolol and atropine. 4. The administration of norepinephrine evoked a relaxation in the isolated jejunum muscle strips and the effect was completely blocked by the pretreatment with phenoxybenzamine. 5. The administration of isoproterenol produced a relaxation in the isolated jejunum muscle strips and the effect was not affected by pretreatment with phenoxybenzamine, whereas the effect was completely blocked by the pretratment with propranolol. 6) The administration of acetylcholine produced a marked contraction in the isolated jejunum muscle strips and the effect was completely abolished by the pretreatment of atropine. These experimental evidences indicate that the inhibitory response to the periarterial stimulation is due to adrenergic fibers and the excitatory response is due to neither adrenergic nor cholinergic component.

  • PDF

Preparation of graphene oxide incorporated polyamide thin-film composite membranes for PPCPs removal

  • Wang, Xiaoping;Li, Nana;Zhao, Yu;Xia, Shengji
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.211-220
    • /
    • 2018
  • Incorporating nano-materials in thin-film composite (TFC) membranes has been considered to be an approach to achieve higher membrane performance in various water treatment processes. This study investigated the rejection efficiency of three target compounds, i.e., reserpine, norfloxacin and tetracycline hydrochloride, by TFC membranes with different graphene oxide proportions. Graphene oxide (GO) was incorporated into the polyamide active layer of a TFC membrane via an interfacial polymerization (IP) reaction. The TFC membranes were characterized with FTIR, FE-SEM, AFM; in addition, the water contact angle measurements as well as the permeation and separation performance were evaluated. The prepared GO-TFC membranes exhibited a much higher flux ($3.11{\pm}0.04L/m2{\cdot}h{\cdot}bar$) than the pristine TFC membranes ($2.12{\pm}0.05L/m2{\cdot}h{\cdot}bar$) without sacrificing their foulant rejection abilities. At the same time, the GO-modified membrane appeared to be less sensitive to pH changes than the pure TFC membrane. A significant improvement in the anti-fouling property of the membrane was observed, which was ascribed to the favorable change in the membrane's hydrophilicity, surface morphology and surface charge through the addition of an appropriate amount of GO. This study predominantly improved the understanding of the different PA/GO membranes and outlined improved industrial applications of such membranes in the future.

The Role of Na-K Pump in the Modulation of Vascular Tone in the Rabbit (혈관 긴장도 조절에 미치는 Na-K Pump에 관한 연구)

  • Kim, Ki-Whan;Kim, Jun
    • The Korean Journal of Physiology
    • /
    • v.16 no.1
    • /
    • pp.1-11
    • /
    • 1982
  • Force development of smooth muscle cells is directly regulated by the concentration of free calcium ions in the sarcoplasm, and the sarcoplasmic concentration of calcium ion can be modulated by electrogenic Na-K pump. The role of Na-K pump on vascular tone was studied in isolated rabbit renal artery. Helical strips of arterial muscle were prepared from left renal arteries. All experiments were performed in $HCO_3^--buffered$ Tyrode solution which was aerated with $3%CO_2-97%\;O_2$ mixed gas and kept at $35^{\circ}C$. In some experiments, rabbit was injected intraperitoneally $18{\sim}24$ hours prior to the experiments, with a large dose(5 mg/kg body wt) of reserpine, in order to eliminate the catecholamines present in intrinsic adrenergic nerve terminate. Treatment used in this experiment that inhibits Na-K pump was the exposure of strips to K-free Tyrode solution. Contractile response to K free Tyrode solution developed slowly and the time required for maximum contracture was $20{\sim}30$ minutes. This K-free contracture was rapidly relaxed by the addition of potassium to the bathing solution. No K-free contracture occurred in a Ca-free Tyrode solution. But contraction developed rapidly when calcium ion was added to the bathing solution after 30 minute exposure of the strip to Ca-free Tyrode solution. This contracture was completely inhibited by Ca-antagonist, verapamil. The K-free contracture was abolished by ${\alpha}-adrenergic$ blocker, phentolamine, as well as by the catecholamine depletion from adrenergic nerve terminals. Even in reserpinized strip, the exogenous norepinephrine-induced contraction in K-free Tyrode solution was rapidly suppressed by the addition of potassium ion. The results of this experiment suggest that K free contracture develops by norepinephrine release from adrenergic nerve terminals, while the relaxation of K-free contracture is induced by the activation of electrogenic Na-K pump.

  • PDF

Involvement of Serotonergic Mechanism in the Nucleus Tractus Solitarius for the Regulation of Blood Pressure and Heart Rate of Rats (흰쥐의 혈압 및 심박동수 조절에 대하여 Nucleus Tractus Solitarius 부위의 Serotonin성 기전의 역할)

  • Lee, Yong-Kyu;Hong, Ki-Whan;Yoon, Jae-Soon
    • The Korean Journal of Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.1-11
    • /
    • 1989
  • In this study, it was aimed to investigate the role of serotonergic neurotransmission in nucleus tractus solitarius (NTS) for the central regulation of blood pressure and heart rate and its involvement in baroreceptor reflex activation in rats. A microinjection of 5-hydroxytryptamine (5-HT) into the NTS produced decreases in blood pressure and heart rate. Maximal decreases were $34.4{\pm}1.6$ mmHg and $41.7{\pm}10.2$ beats per min by 300 pmol of 5-HT. Microinjections of ${\alpha}-methylnor-adrenaline$ $({\alpha}-MNE)$ and clonidine manifested similar decreases in blood pressure and heart rate. The hypotensive and bradycardial effects of 5-HT were blocked by previous applications of 5-HT antagonists, ritanserin, methysergide and ketanserin into the NTS, respectively. By pretreatment with reserpine and 6-hydroxydopamine (6-OHDA, i.c.v.), both hypotensive and bradycardial effects of 5-HT were significantly attenuated. Pretreatment with 5, 7-dihydroxytryptamine (5,7-DHT, i.c.v.) enhanced the hypotensive and bradycardial effects of 5-HT. Similarly, following pretreatment with 6-OHDA, the effects of clonidine were increased. Pretreatment either with 5,7-DHT or 6-OHDA significantly attenuated the sensitivity of baroreflex produced either by phenylephrine or by sodium nitroprusside. When either 5,7-DHT or 6-OHDA was injected into the NTS $(5,7-DHT;\;8{\mu}g\;6-OHDA;\;10{\mu}g)$, both of the baroreflex sensitivities were impaired. In the immunohistochemical study, the injection of 6-OHDA into the the NTS led to reduction of axon terminal varicosity, however, the injection did not reduce the numbers of catecholaminergic cell bodies. Likewise, when 5,7-DHT was injected into the NTS, the varicosity of serotonergic axon terminals was markedly reduced. Based on these results, it is suggested that (1) stimulation of serotonergic receptors in the NTS leads to decreases in blood pressure and heart rate as observed with the stimulation of catecholaminergic system, (2) both serotonergic and catecholaminergic receptors may be located postsynaptically, and (3) the serotonergic neurons as well as catecholaminergic neurons may have a close relevance for the activation of baroreflex.

  • PDF

Pressor Action of Physostigmine in the Rabbit (토끼에 있어서의 Physostigmine의 혈압상승작용)

  • Kim, Je-Bong
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.101-111
    • /
    • 1990
  • The effect of physostigmine (PS), which has been shown to act on the muscarinic receptors in the brains of the rat, dog and cat, on the arterial blood pressure (BP) was investigated in urethane-anesthetized rabbits. Intravenous (iv) PS, $25{\sim}300\;{\mu}g/kg$, caused little change in BP. However, after treatment of rabbits with either of chlorisondamine (CS), hexamethonium, intracerebroventricular (icv) clonidine, icv xylazine and icy reserpine iv PS produced a pressor response. Spinalization of the rabbit also caused iv PS to increase BP. The pressor effect of iv PS in CS-treated rabbits was markedly reduced after prazosin or pirenzepine. Iv PS inhibited the pressor response to McN-A-343 in CS-treated and in spinal rabbits; alternately during the infusion of McN-A-343 iv PS failed to produce the pressor response. The pressor response to DMPP was not affected by iv PS. Icv PS, $12{\sim}200\;{\mu}g/kg$, produced a pressor response which was accentuated after CS-treatment. This pressor effect was inhibited, though not complete, by prazosin or by pirenzepine. A simultaneous treatment of rabbits with both $[Sar^{1},\;Ala^{8}]-angiotensin$ II, an angiotensin II antagonist, and prazosin or pirenzepine almost completely abolished the pressor effect of icv PS, whereas the angiotensin II antagonist did not enhance the inhibitory effect of pirenzepine and prazosin on the pressor response to iv PS . Icv pirenzepine blocked the pressor response to icv PS without affecting that to iv PS. The present results show that the pressor response to iv PS in CS-treated and in spinal rabbits arises from stimulation of the muscarinic receptors in the sympathetic ganglia, whereas the pressor response by icv PS via activation of the muscarinic receptors in the brain which causes an enhancement in the outflow of sympathetic discharge and angiotensin. The results also suggest that iv PS is unable to produce a pressor response in the rabbit unless the sensitivity of the gangionic muscarinic receptors is altered by ganglionic nicotinic blockade, by the decrease of central sympathetic outflow on the sympathetic ganglia or by spinalization.

  • PDF

The Effects of $\alpha$ -Adrenergic Drugs on the Myocardial Preconditioning in Rats. (교감신경계 약물의 허혈-재관류 후 심기능 회복에 미치는 영향)

  • 장원채;송상윤;오상기;안병희;김상형
    • Journal of Chest Surgery
    • /
    • v.34 no.11
    • /
    • pp.809-822
    • /
    • 2001
  • Background: Ischemic preconditioning(IP) is known to be effective in the protection of myocardial necrosis, arrhythmia, and the restoration of the myocardial function in the ischemia-reperfusion state of the heart. However the exact mechanism is not clearly understood. The purpose of this study was to elucidate the trigger mechanism 7f IP on the restoration of the myocardial function after ischemia-reperfusion. Material and Method: By connecting a Langendorff perfusion apparatus with an isolated heart of a rat, the normal temperature of the heart was maintained. The experiment was conducted in seven groups, which were divided according to the preconditioning stimuli and blockage methods Group I(n=10) was a group without IP, Group II(n=10) a group of three-minute IP, Group III(n=10) a group of PEIP, Group IV(n=10) a group of clonidine IP, Group V(n=10) a group of If after reserpine, Group Vl(n=10) a group of PE & prazosin IP, and Group Vll(n=10) a group of clonidine & yohimbine IP. Hemodynamic parameters of DP, LVEDP, $\pm$dP/dT and the changes of perfusion in the coronary artery were evaluated. Result: Developed pressure and +dP/dT changed per unit time. After 20 minutes of reperfusion, those of Group II and III were 63.1$\pm$3.7%, 64.8$\pm$4.6% and 64.5$\pm$4.6%, 63.8$\pm$4.4%, which improved more significantly than those of Group I(P<0.05), However, there were no significant differences between the Groups V and Vl, and Group I. Conclusion: The Brief ischemic preconditioning and pharmacological preconditioning using $\alpha$-receptor sympatho-mimetics have protecting effects on the restoration of myocardial function after reperfusion. And the protecting effect of preconditioning seems to be related to sympathetic neurotransmitters and to the selective action of the $\alpha$$_1$-adrenergic receptor.

  • PDF

Renal Effects of Intracerebroventricular Bromocriptine in the Rabbit (가토에 있어서 측뇌실내 Bromocriptine의 신장작용)

  • Kook, Young-Johng;Kim, Kyung-Keun;Kim, Jae-Pil;Kim, Kyung-Ho
    • The Korean Journal of Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.49-61
    • /
    • 1985
  • In view of the facts that dopamine (DA) when given directly into a lateral ventricle (i.c.v.) of the rabbit brain induces antidiuresis and that haloperidol, a non-specific antagonist of DA receptors, produces anti-diuresis in smaller doses and diuresis and natriuresis in larger doses, the present study was undertaken to delineate the roles of various DA receptors involved in the center-mediated regulation of renal function. Bromocriptine (BRC), a relatively specific agonist of D-2 receptors and at the same time a D-,1 antagonist, elicited natriuresis and diuresis when given i.c.v. in doses ranging from 20 to 600 {\mu}g/kg$, roughly in dose-related fashion, while the renal perfusion and glomerular filtration progressively decreased with doses, indicating that the diuretic, natriuretic action resides in the tubules, not related to the hemodynamic effects. These diuresis and natriuresis were most marked with 200 ${\mu}g/kg$, with the fractional sodium excretion reaching about 10%. With 600 ${\mu}g/kg$, however, the diuretic, natriuretic action was preceded by a transient oliguria resulting from severe reduction of renal perfusion, concomitant with marked but transient hypertension. When given intravenously, however, BRC produced antidiuresis and antinatriuresis along with decreases in renal hemodynamics associated with systemic hypotension, thus indicating that the renal effects produced by i.c.v. BRC is not caused by a direct renal effects of the agent which might have reached the systemic circulation. In experiments in which DA was given i.c.v. prior to BRC, 150 ${\mu}g/kg$ DA did not affect the effects of BRC (200 ${\mu}g/kg$), while 500 ${\mu}g/kg$ DA abolished the BRC effect. In rabbits treated with reserpine, 1 mg/kg i.v.,24 h prior to the experiment, i.c.v. BRC could unfold its renal effects not only undiminished but rather exaggerated and more promptly. In preparations in which one kidney is deprived of nervous connection, the denervated kidney responded with marked diuresis and natriuresis, whereas the innervated, control kidney exhibited antidiuresis. These observations suggest that i.c.v. BRC influences the renal function through release of some humoral natriuretic factor as well as by increasing sympathetic tone, and that various DA receptors might be involved with differential roles in the center-mediated regulation of the renal function.

  • PDF

Role of Catecholamines in Ventricular Fibrillation (Catecholamines에 관(關)하여 -제4편(第四編) : 심실전동발생(心室顫動發生)에 있어서의 catecholamines의 의의(意義)-)

  • Lee, Woo-Choo
    • The Korean Journal of Pharmacology
    • /
    • v.19 no.1
    • /
    • pp.15-35
    • /
    • 1983
  • Although it has been well known that ventricular fibrillation is the most important complication during hypothermia, much investigation has failed to show the exact nature of the etiology of ventricular fibrillation. Recently, there has been considerable research on the relationship between sympathetic activity and ventricular fibrillation under hypothermia. Cardiac muscle normally contains a certain amount of norepinephrine and the dramatic effect of this catecholamines on the cardiac muscle is well documented. It is, therefore, conceivable that cardiac catecholamines might exert an influence on the susceptibility of heart muscle to tachycardia, ventricular fibrillation and arrhythmia, under hypothermia. Hypothermia itself is stress enough to increase tonus of sympatheticoadrenal system. The normal heart is supplied by an autonomic innervation and is subjected to action of circulating catecholamines which may be released from the heart. If the reaction of the heart associated with a variable amount of cardiac catecholamines is. permitted to occur in the induction of hypothermia, the action of this agent on the heart has not to be differentiated from the direct effects of cooling. The studies presented in this paper were designed to provide further information about the cardio-physiological effects of reduced body temperature, with special reference to the role of catecholamines in ventricular fibrillation. Healthy cats, weighing about 3 kg, were anesthetized with pentobarbital(30 mg/kg) intraperitoneally. The trachea was intubated and the endotracheal tube was connected to a C.F. Palmer type A.C. respirator. Hypothermia was induced by immersing the cat into a ice water tub and the rate of body temperature lowering was $1^{\circ}C$ per 5 to 8 min. Esophageal temperature and ECG (Lead II) were simultaneously monitored. In some cases the blood pH and serum sodium and potassium were estimated before the experiment. After the experiment the animals were killed and the hearts were excised. The catecholamines content of the cardiac muscle was measured by the method of Shore and Olin (1958). The results obtained are summarized as follows. 1) In control animal the heart rate was slowed as the temperature fell and the average pulse rates of eight animals were read 94/min at $31^{\circ}C$, 70/min at $27^{\circ}C$ and 43/min at $23^{\circ}C$ if esophageal temperature. Ventricular fibrillation was occurred with no exception at a mean temperature of $20.3^{\circ}C(21-l9^{\circ}C)$. The electrocardiogram revealed abnormal P waves in each progressive cooling of the heart. there was, ultimately, a marked delay in the P-R interval, QRS complex and Q-T interval. Inversion of the T waves was characteristic of all animals. The catecholamines content of the heart muscle excised immediately after the occurrence of ventricular fibrillation was about thirty percent lower than that of the pre-hypothermic heart, that is, $1.0\;{\mu}g/g$ wet weight compared to the prehypothermic value of $1.41\;{\mu}g/g$ wet weight. The changes of blood pH, serum sodium and potassium concentration were not remarkable. 2) By the adrenergic receptor blocking agent, DCI(2-3 mg/kg), given intramuscularly thirty minutes before hypothermia, ventricular fibrillation did not occur in one of five animals when their body temperature was reduced even to $16^{\circ}C$. These animals succumbed at that low temperature, and the changes of heart rate and loss of myocardial catecholamines after hypothermia were similar to those of normal animals. The actual effect of DCI preventing the ventricular fibrillation is not predictable. 3) Administration of reserpine(1 mg/kg, i.m.) 24 hours Prior to hypothermia disclosed reduced incidence of ventricular fibrillation, that is, six of the nine animals went into fibrillation at an average temperature of $19.6^{\circ}C$. By reserpine myocardial catecholamines content dropped to $0.045\;{\mu}g/g$ wet weight. 4) Bretylium pretreatment(20 mg/kg, i.m.), which blocks the release of catecholamines, Prevented the ventricular fibrillation under hypothermia in four of the eight cats. The pulse rate, however, was approximately the same as control and in some cases was rather slower. 5) Six cats treated with norepinephrine(2 mg/kg, i.m.) or DOPA(50 mg/kg) and tranylcypromine(10 mg/kg), which tab teen proved to cause significant increase in the catecholamines content of the heart muscle, showed ventricular fibrillation in all animals under hypothermia at average temperature of $21.6^{\circ}C$ and the pulse rate increased remarkably as compared with that of normal. Catecholamines content of cardiac muscle of these animals markedly decreased after hypothermia but higher than control animals. 6) The functional refractory periods of isolated rabbit atria, determined by the paired stimulus technique, was markedly shortened by administration of epinephrine, norepinephrine and isoproterenol. 7) Adrenergic beta-blocking agents, such as pronethalol, propranolol and sotalol(MJ-1999), inhibited completely the shortening of refractory period induced by norepinephrine. 8) Pretreatment with either phenoxftenbamine or phentolamine, an adrenergic alphatlocking agent, did not modify the decrease in refractory period induced by norepinephrine. From the above experiment it is possible to conclude that catecholamines play an important role in producing ventricular fibrillation under hypothermia. The shortening of the refractorf period of cardiac muscle induced by catecholamines mar be considered as a partial factor in producing ventriculr fibrillaton and to be mediated by beta-adrenergic receptor.

  • PDF

Contractile Response of Methylene Blue on Vascular Smooth Muscles - Rabbit Thoracic Aorta and Porcine Mesenteric Artery - (혈관평활근에 대한 Methylene Blue의 수축작용 - 가토흉부대동맥근과 돼지장간막동맥근 -)

  • Baik, Yung-Hong;Choi, Soo-Yong;Kim, Jae-Ha;Cho, Nam-Kee
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.13-23
    • /
    • 1990
  • Methylene Blue (MeB) and gentian violet $(10^{-6}{\sim}10^{-4}\;M)$ produced contractions in isolated thoracic aortic preparations of rabbits in a dose-dependent fashion, while other dyes, evans blue and eosine yellowish, did not affect the basal tension in the same range of doses. Porcine mesenteric arterial rings also responded to MeB with dose-dependent contractions. Single dose of $10^{-4}$ M MeB produced a biphasic response: contraction followed by relaxation. The contraction developed slowly within $2{\sim}4$ min and peaked in about 20 minutes and then slowly relaxed to the basal level. Tyramine $(10^{-4}\;M)$ also induced contraction but it developed faster and was more persistent than that of MeB. While the tyramine-induced tension was reproducible, the MeB-induced one wat not reiterable until 3 to 5 hours after washing out the MeB. Adding $10^{-4}$ M MeB further potentiated the contraction induced by $10^{-4}$ M tyramine. However, the MeB contraction was not affected by further addition or tyramine. Both tyramine- and MeB-induced tensions were abolished or significantly inhibited by pretreatment with various drugs acting on the sympathetic nervous system. The tyramine-induced tension was more sensitive to guanethidine and 6-hydroxydopamine than the MeB-induced tension, while the latter was more sensitive to $Ca^{2+}-free$ PSS and reserpine. But they have similar sensitivity to prazosin. The MeB-induced tension was significantly inhibited but not abolished by 6-hydroxydopamine pretreatment. However, either tyramine or 6-hydroxydopamine could not affect the basal tension of the ring that MeB once had been tested. These results suggest that MeB-induced contractions of rabbit thoracic aorta and porcine mesenteric artery result from a release of endogenous norepinephrine from adrenergic nerve endings and are dependent in part on extracellular calcium, and that the potency of MeB to release or to deplete norepinephrine is greater than that of either tyramine or 6-hydroxydopamine.

  • PDF