• Title/Summary/Keyword: research reactors

Search Result 719, Processing Time 0.031 seconds

Economic Design of Activated Sludge System at the Optimum Sludge Concentration (슬러지 농도 최적화에 따른 합리적인 활성슬러지공정 설계방안 연구)

  • Lee, Byung Joon;Choi, Yun Young
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.5
    • /
    • pp.483-490
    • /
    • 2014
  • The design procedures for a biological reactor and a secondary settling tank (SST) of an activated sludge system are based on the steady state design method (Ekama et al., 1986; WRC, 1984) and the 1-D flux theory design method (Ekama et al., 1997), respectively. This study combined both of the design procedures, to determine the optimum sludge concentration in the reactor and the best design with the lowest cost. The best design of the reactor volume and the SST diameter at the optimum sludge concentration were specified with varying wastewater and sludge characteristics, temperature, sludge retention time (SRT) and peak flow rate. The effects of the influent wastewater characteristics, such as substrate concentration and unbiodegradable particulate fraction, were found to be considerable, but the effect of unbiodegradable soluble fraction was to be negligible. The effects of sludge settling characteristics, were also significant. SRT, as an operating parameter, was found to be an important factor for determining the optimum sludge concentration. However, the effect of temperature was found to be small. Furthermore, for designing a large scale wastewater treatment plant, the number of reactors or SSTs could be estimated, by dividing the total reactor volume or SST area. The new combined design procedure, proposed in this research, will be able to allow engineers to provide the best design of an activated sludge system with the lowest cost.

Development for Improvement Methodology of Radiation Shielding Evaluation Efficiency about PWR SNF Interim Storage Facility (PWR 사용후핵연료 중간저장시설의 몬테칼로 차폐해석 방법에 대한 계산효율성 개선방안 연구)

  • Kim, Taeman;Seo, Myungwhan;Cho, Chunhyung;Cha, Gilyong;Kim, Soonyoung
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.2
    • /
    • pp.92-100
    • /
    • 2015
  • For the purpose of improving the efficiency of the radiation impact assessment of dry interim storage facilities for the spent nuclear fuel of pressurized water reactors (PWRs), radiation impact assessment was performed after the application of sensitivity assessment according to the radiation source term designation method, development of a 2-step calculation technique, and cooling time credit. The present study successively designated radiation source terms in accordance with the cask arrangement order in the shielding building, assessed sensitivity, which affects direct dose, and confirmed that the radiation dosage of the external walls of the shielding building was dominantly affected by the two columns closest to the internal walls. In addition, in the case in which shielding buildings were introduced into storage facilities, the present study established and assessed the 2-step calculation technique, which can reduce the immense computational analysis time. Consequently, results similar to those from existing calculations were derived in approximately half the analysis time. Finally, when radiation source terms were established by adding the storage period of the storage casks successively stored in the storage facilities and the cooling period of the spent nuclear fuel, the radiation dose of the external walls of the buildings was confirmed to be approximately 40% lower than the calculated values; the cooling period was established as being identical. The present study was conducted to improve the efficiency of the Monte Carlo shielding analysis method for radiation impact assessment of interim storage facilities. If reliability is improved through the assessment of more diverse cases, the results of the present study can be used for the design of storage facilities and the establishment of site boundary standards.

A Study on the Advancement of Quantitative Risk Assessment for the PBL Process - The Center of FTA and Consequence Analysis- (PBL 반응공정의 정량적 위험성 평가에 관한 연구 - 결함수분석(FTA) 및 사고결과영향분석(CA)을 중심으로-)

  • Lee Young-Soon;Kang Sun-Jung;Choi Bong-Sun;Kim Hyong-Shuk
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.2
    • /
    • pp.1-11
    • /
    • 1998
  • A quantitative risk assessment and consequence analysis for PBL(Poly Butadiene Latex) reaction processes were performed. As a result of the Quantitative risk assessment, for the accident probability of PBL reactors causing a reaction runaway, was calculated as $9.197{\times}10^{-5}/yr$ The most important factor that affected the accident probability of PBL reactor was the relief device. When the reactor exploded, peak overpressure at the target point was $5.066{\times}10^5(Pa)$ and the range of effects windows to be broken occurred in almost all of the factory areas. The maximum radius of effect was 27m, in which workers could be die by the direct for eardrum damage was calculated at 77m. When the PBL reactor exploded, the extent of structural damage to buildings was calculated from the center of the explosion to a range of 52m. The results of the study's assessment have provided a direction for facility's improvement as well as effective safety investment.

  • PDF

Analysis of Free Ammonia Inhibition of Nitrite Oxidizing Bacteria Using a Dissolved Oxygen Respirometer

  • Kim, Dong-Jin;Lee, Dong-Ig;Cha, Gi-Cheol;Keller, Jurg
    • Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.125-130
    • /
    • 2008
  • Free ammonia ($NH_3$-N) inhibition of nitrite-oxidizing bacteria (NOB) has been widely studied for partial nitrification (or nitrite accumulation) and denitrification via nitrite ($NO_2^-$-N) as a low-cost treatment of ammonium containing wastewater. The literature on $NH_3$-N inhibition of NOB, however, shows disagreement about the threshold $NH_3$-N concentration and its degree of inhibition. In order to clarify the confusion, a simple and cheap respirometric method was devised to investigate the effect of free ammonia inhibition of NOB. Sludge samples from an autotrophic nitrifying reactor were exposed to various $NH_3$-N concentrations to measure the maximum specific nitrite oxidation rate ($\hat{K}_{NO}$) using a respirometer. NOB biomass was estimated from the yield values in the literature. Free ammonia inhibition of nitrite oxidizing bacteria was reversible and the specific nitrite oxidation rate ($K_{NO}$) decreased from 0.141 to 0.116, 0.100, 0.097 and 0.081 mg $NO_2^-$-N/mg NOB h, respectively, as the $NH_3$-N concentration increased from 0.0 to 1.0, 4.1, 9.7 and 22.9 mg/L. A nonlinear regression based on the noncompetitive inhibition mode gave an estimate of the Inhibition concentration ($K_I$) of free ammonia to be 21.3 mg $NH_3$-N/L. Previous studies gave $\hat{K}_{NO}$ of Nitrobacter and Nitrospira as 0.120 and 0.032 mg/mg VSS h. The free ammonia concentration which inhibits Nitrobacter was $30{\sim}50\;mg$ $NH_3$-N/L and Nitrospira was inhibited at $0.04{\sim}0.08\;mg$ $NH_3$-N/L. The results support the fact that Nitrobacter is the dominant NOB in the reactor. The variations in the reported values of free ammonia inhibition may be due to the different species of nitrite oxidizers present in the reactors. The respirometric method provides rapid and reliable analysis of the behavior and community of the nitrite oxidizing bacteria.

The Relative Effectiveness of Various Radiation Sources on the Resistivity Change in n-Type Silicon

  • Jung, Wun
    • Nuclear Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.91-101
    • /
    • 1969
  • Resistivity changes of n-type float-zone silicon crystals with 6.4$\times$10$^{14}$ to 1.25$\times$10$^{17}$ phosphorus atoms/㎤ due to irradiation by (1) 1 MeV electrons, (2) two types of research reactors, and (3) $Co^{60}$ ${\gamma}$-ray sources were investigated. The results were analyzed on the basis of a simple exponential formula derived by Buehler. While the formula gave a fair fit in the low fluence range in most cases, the deviation was quite appreciable in the case of 1 MeV electron irradiation, and a linear change gave better fit in some cases. The large change in the carrier removal rate in electron-irradiated samples in the high fluence range was analyzed in detail in terms of the Fermi level cross-over of the defect levels. Based on the damage constants evaluated from the initial portion of data where the formula was applicable, the relative effectiveness of various radiation sources in causing the resistivity change in n-type silicon was compared. The TRIGA Mark II reactor neutrons, for example, were found to be about 40 times more effective than 1 MeV electrons. The dependence of the damage constant on the initial carrier concentration was also examined. The physical basis of the exponential law and the effect of the Fermi level cross-over of the defect levels on the resistivity change in the high fluence ranges are discussed.

  • PDF

Experiences of Latent Tuberculosis Infection Treatment for the North Korean Refugees

  • Kim, Beong Ki;Kim, Hee Jin;Kim, Ho Jin;Cha, Jae Hyung;Lee, Jin Beom;Jeon, Jeonghe;Kim, Chi Young;Kim, Young;Kim, Je Hyeong;Shin, Chol;Lee, Seung Heon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.82 no.4
    • /
    • pp.306-310
    • /
    • 2019
  • Background: Tuberculosis (TB) is increasing in immigrants. We aimed to investigate the current status of latent tuberculosis infection (LTBI) treatment for North Korean Refugees (NKR) compared to South Koreans Contacts (SKC). Methods: TB close contacts in a closed facility of SKC and NKR who underwent LTBI screening in a settlement support center for NKR were analyzed retrospectively. Results: Among tuberculin skin test (TST) ${\geq}10mm$ (n=298) reactors, the males accounted for 72.2% in SKC (n=126) and 19.5% in NKR (n=172) (p<0.01). The mean age was higher in South Korea ($42.8{\pm}9.9years$ vs. $35.4{\pm}10.0years$, p<0.01). Additionally, the mean TST size was significantly bigger in NKR ($17.39{\pm}3.9mm$ vs. $16.57{\pm}4.2mm$, p=0.03). The LTBI treatments were initiated for all screened NKR, and LTBI completion rate was only 68.0%. However, in NKR, LTBI treatment completion rate was significantly increased by shorter 4R regimen (odds ratio [OR], 9.296; 95% confidence interval [CI], 4.159-20.774; p<0.01) and male (OR, 3.447; 95% CI, 1.191-9.974; p=0.02). Conclusion: LTBI treatment compliance must be improved in NKR with a shorter regimen. In addition, a larger study regarding a focus on LTBI with easy access to related data for NKR should be conducted.

Synthesis of Polymeric Surfactants Using CSTR and Their Emulsion PSA Properties (연속 교반 반응기를 이용한 고분자 유화제 합성 및 에멀션 점착 물성)

  • Seung-Min Lim;Myung-Cheon Lee
    • Journal of Adhesion and Interface
    • /
    • v.24 no.3
    • /
    • pp.77-85
    • /
    • 2023
  • In this research, polymeric anionic surfactants having various molecular weights and acid values were synthesized using a continuous stirred tank reactor (CSTR). The CSTR has an advantage of higher production rate and more constant product properties compared to batch and semi-batch reactors. The polymeric surfactants were made using butyl acrylate as a hydrophobic group and acrylic acid as a hydrophilic group. The synthesized polymeric surfactants were ionized with alkali solution and were used as an anionic surfactant. To investigate the properties as a surfactant, the properties of the synthesized surfactant, such as acid value, critical micelle concentration (CMC) and molecular weight, were measured. The results showed that the acid values of the polymeric surfactants were 60 to 380 and a number average molecular weight were 8,000 to 13,000 g/mol. Also, it was found that the CMC was around 0.01 g/ml, which showed similar level values with ordinary surfactant. To prove the performance of the polymeric surfactant, acrylic emulsion PSAs were synthesized using the acquired polymeric surfactant. The results showed that the maximum peel strength of 21.24 N/25mm when acid value was 150 and molecular weight was 8,500 g/mol. The values of peel strength and initial tack of acrylic emulsion PSAs using polymeric surfactant synthesized in this study showed much higher than those of reference PSAs synthesized using ordinary anionic surfactant, SDS (Sodium Dodecyl Sulfate) and SDS/TRX (Triton X-100).

Effect of substrate concentration on the operating characteristics of microbial electrolysis cells (기질 농도에 따른 미생물전기분해전지의 운전 특성)

  • Hwijin Seo;Jaeil Kim;Seo Jin Ki;Yongtae Ahn
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.4
    • /
    • pp.41-49
    • /
    • 2023
  • This study examined the effect of input substrate concentration on hydrogen production of microbial electrolysis cells. To compare the performance of MEC according to the input substrate concentration, six laboratory-scale MEC reactors were operated by sequentially increasing the input substrate concentration from 2 g/L of sodium acetate, to 4 g/L, and 6 g/L. The current density, hydrogen production, and SCOD removal rate were analyzed, and energy efficiency and cathodic hydrogen recovery were calculated to compare the performance of MEC. The maximum volumetric current density was obtained at 4 g/L condition (76.3 A/m3) and it decreased to 19.0 A/m3, when the input concentration was increased to 6 g/L, which was a 75% decrease compared to the 4 g/L input condition. Maximum hydrogen production was obtained also at 4 g/L condition (47.3 ± 16.8 mL), but maximum hydrogen yield was obtained at 2 g/L input condition (1.1 L H2/g CODin). Energy efficiencies were also highest in 2 g/L condition; the lowest result was observed at 6 g/L condition. Maximum electrical energy efficiency was 76.4%, and the maximum overall energy efficiency was 39.7% at 2 g/L condition. However, when the substrate concentration increased to 6 g/L, the performance was drastically decreased. Cathodic hydrogen recovery also showed a similar tendency with energy efficiency, with the lowest concentration condition showing the best performance. It can be concluded that operating at low input substrate concentration might be better when considering not only hydrogen yield but also energy efficiency.

Simultaneous Separation and Determination of $^{l4}C\;and\;^3H$ in Spent Resins from PWR Nuclear Power Plants (가압경수로형 원전에서 발생된 폐수지의 $^{14}C$$^3H$ 동시 분리 및 측정)

  • Park, Soon-Dal;Kim, Jung-Suck;Kim, Jong-Goo;Han, Sun-Ho;Jee, Kwang-Yong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.179-188
    • /
    • 2007
  • In this work $^{14}C\;and\;^3H$ distribution characteristics of spent resins from nuclear power plants(NPPs), pressurized water reactors(PWRs), was investigated. It was found that the recovery percent of $^{14}C$ by the wet oxidation-acid stripping was $81%{\sim}100%$ for the added activity range of $^{14}C,\;0.72\;Bq{\sim}460\;Bq$, and it was not affected by the kinds of stripping acids, 3N-HCl, $3\;N-HNO_3\;and\;3\;N-H_2SO_4$. And the recovery percent of $^3H$ by distillation using the same apparatus was $81%{\sim}101%$ for the added activity range of $^3H,\;0.60\;Bq{\sim}435\;Bq$. Among the tested stripping acids, 3\;N-HCl, $3\;N-HNO_3\;and\;3\;N-H_2SO_4$, only the trapped $^3H$ solution by distillation in $3\;N-H_2SO_4$ was compatible with the 3H scintillator, Ultimagold XR. Neither of the $^{14}C\;and\;^3H$ trapping solutions from the spent ion exchange resin samples by the wet oxidation-3 $N-H_2SO_4$ stripping contained gamma nuclides. However, some gamma nuclides, $^{60}Co,\;^{134}Cs,\;^{137}Cs\;and\;^{54}Mn$, were found in the trapped $^3H$ solutions of the spent resins by the wet oxidation-3 N-HCl stripping. It was the same for the $^3H$ trapping solutions of the spent resins by Sample Oxidizer(PACKARD MODEL 307). Meanwhile only two nuclides, $^{134}Cs,\;and\;^{134}Cs$, were found in the $^{14}C$ trapping solutions of the spent resins by Sample Oxidizer(PACKARD MODEL 307). It was found that most of the $^{14}C$ in the spent resins existed as inorganic carbon form, more than about 70% of the total $^{14}C$ content. Among the analyzed 30 spent ion exchange resin samples, the average concentration of $^{14}C$ and $^3C$ for the high radioactive samples, 8 samples, was $19000\;Bq/g{\pm}41000\;Bq/g,\;670\;Bq/g{\pm}460\;Bq/g$ and that for the low radioactive samples, 22 samples, was $4.2\;Bq/g{\pm}4.3\;Bq/g,\;6.0\;Bq/g{\pm}5.3\;Bq/g$, respectively. And the average $^{14}C/^3H$ ratio for the high radioactive samples, was higher, 28, than that of low radioactive samples, 0.70. Some linear relationship trend was found between the activity concentrations of $^{14}C\;and\;^3H$.

  • PDF

Enhanced Anaerobic Degradation of Food Waste by Employing Rumen Microorganisms (Rumen 미생물을 이용한 주방폐기물 혐기성소화의 효율증진 방안)

  • Shin, Hang-Sik;Song, Young-Chae;Son, Sung-Sub;Bae, Byung-Uk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.1 no.1
    • /
    • pp.103-113
    • /
    • 1993
  • Every year, over $3.37{\times}10^7$ ton of municipal solid waste is generated in Korea, of which about 28% is organic food waste from restaurant, dining halls and households etc. Methane conversion of the food waste by anaerobic digestion could be a viable approach for energy recovery as well as safe disposal of the waste. However, as food waste is composed of highmolecular complex polymers such as cellulose, lignin and protein, anaerobic digestion of food waste has not been efficient in terms of volumetric loading rate, solid retention time and extent of anaerobic degradation. In this research, the improved anaerobic degradation of food waste was attemped by applying rumen microorganisms to anaerobic digestion. Acidification efficiency of food waste by rumen microorganisms was compared with that of conventional acidogenesis. And optimum acidification conditions by rumen microorganisms were also determined. For the experiments, anaerobic batch reactors of 600 mL was fed with the processed (dried and milled) food waste obtained from a restaurant. Ultimate volatile fatty acid (VFA) yield produced by rumen microorganisms was about 8.4 meq VFA/g volatile solid (VS) that is 95% of the theoretical value. This yield was not much different from that of conventional acidogenesis, but hydrolysis rate was about twice faster. Cumulative VFA concentration increased from 66 meq/L to 480 meq/L, when the initial TS was increased from 1% to 15%. But VFA yield at 15% TS was half of that at 1% TS. This inhibition on the acidification might be caused by the rapid drop of pH and higher concentration of nonionized VFA. Optimal pH and temperature range for the acidification were about 6.0~7.5 and $35{\sim}45^{\circ}C$, respectively.

  • PDF