• 제목/요약/키워드: research reactor HANARO

검색결과 151건 처리시간 0.025초

CHARACTERISTICS OF THE PNEUMATIC TRANSFER SYSTEM AND THE IRRADIATION HOLE AT THE HANARO RESEARCH REACTOR

  • Chung, Yong-Sam;Kim, Sun-Ha;Moon, Jong-Hwa;Kim, Hark-Rho;Kim, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • 제38권6호
    • /
    • pp.585-590
    • /
    • 2006
  • This paper describes the results of an irradiation test and the specifications of the pneumatic transfer system (PTS) in the NAA #3 irradiation hole at the HANARO research reactor, which was reinstalled after some modifications of the operation mode at the end of 2004. The outer and inner diameters of the PE transfer tube are 34.1 and 27.5 mm, respectively. PE rabbit was used for sample irradiation. The $N_2$ gas pressure of the PTS lines was adjusted to 0.75 bar. The average sending time to the reactor was $8.5{\pm}0.3$ s and the average receiving time back to the receiver was $3.2{\pm}0.2$ s. The internal and external temperature of the irradiation tube was measured in a range of 50 to $80^{\circ}C$ for a 40 s to 80 s irradiation time, respectively. The optimum irradiation time was estimated to be less than 80 s. The thermal, epithermal and fast neutron flux at 30 MW thermal power were $1.42{\pm}0.01{\times}10^{14},\;1.51{\pm}0.04{\times}10^{13}$ and $9.48{\pm}0.69{\times}10^{11} n{\cdot}cm^{-2}{\codt}s^{1-}$, respectively. The cadmium ratio was approximately 9.40. The data obtained will be applied to supplement user information and for reactor management.

하나로 Fission Moly 표적 냉각에 대한 유동해석 (Flow Analysis for Fission Moly Target Cooling in HANARO)

  • 박용철
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.502-507
    • /
    • 2003
  • The HANARO, multi-purpose research reactor, 30 MWth open-tank-in-pool type, is under normal operation since it reached the initial critical in February 1995. The HANARO is used for fuel performance tests, radio isotope productions, reactor material performance tests, silicone semiconductor productions and etc. Specially, the HANARO is planning to produce a fission moly-99 of radio isotopes, a mother nuclide of Tc-99m, a medical isotope and is under developing a target handling tool for loading and unloading those at a flow tube (OR-5). The target should be sufficiently cooled in the flow tube without an interference with the cooling of the others and an induction of extremely vibration. This topic is described an analectic analysis for the cooling characteristics of the fission moly-99 target to find the minimum cooling water. It was confirmed through the analysis results that the minimum cooling water, about 2.717 kg/s flew through the flow tube under the worst case that the guide tube got no perforating holes for cooling water to pass through the holes and that the target was safely cooled under about seventy percent (70%) of the maximum allowable temperature of the target.

  • PDF

하나로 유동모의 시험설비의 노심채널 유동분포 해석 (The Analysis of Flow Distribution in the Core Channel of the HANARO Flow Simulated Test Facility)

  • 박용철;김경련
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.151-154
    • /
    • 2004
  • The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial criticality in February, 1995. Many experiments should be safely performed to activate the utilization of the HANARO. A flow simulated test facility has been developed for the verification of structural integrity of those experimental facilities prior to loading In the HANARO. This test facility is composed of three major parts; a half-core structure assembly, flow circulation system and support system. The half-core structure assembly is composed of plenum, grid plate, core channel with flow tubes, chimney and dummy pool. The flow channels are to be filled with flow orifices to simulate similar flow characteristics to the HANARO. This paper describes an analysis of the flow distribution of the cote channel and compares with the test results. As results, the analysis showed similar flow characteristics compared with those in the test results.

  • PDF

연구용 원자로의 정지봉 장치 성능에 미치는 인자 분석과 성능 시험 (Performance test and factor analysis on the performance of shutoff units with the research reactor)

  • 김경련;김석범;고재명;문균영;박종호
    • 한국유체기계학회 논문집
    • /
    • 제10권2호
    • /
    • pp.41-45
    • /
    • 2007
  • The shutoff unit was designed to provide rapid insertion of neutron absorbing material into the reactor core to shutdown the reactor quickly and also to withdraw the absorber slowly to avoid a log-rate trip. Four shutoff units were installed on the HANARO reactor but the half-core test facility was equipped with one shutoff unit. The reactor trip or shutdown is accomplished by four shutoff units by insertion of the shutoff rods. The shutoff rod(SOR) is actuated by a directly linked hydraulic cylinder on the reactor chimney, which is pressurized by a hydraulic pump. The rod is released to drop by gravity, when triplicate solenoid valves are de-energized to vent the cylinder. The hydraulic pump, pipe and air supply system are provided to be similar with the HANARO reactor. The shutoff rod drops for 647mm stroke within 1.13 seconds to shut down the reactor and it is slowly inserted to the full down position, 700mm, with a damping. We have conducted the drop test of the shutoff rod in order to show the performance and the structural integrity of operating system of the shutoff unit. The present paper deals with the 647mm drop time and the withdrawal time according to variation of the pool water temperature, the water level and the core flow.

하나로 수조 방사선 준위의 저감 특성 (Reduction Characteristics of Pool Top Radiation Level in HANARO)

  • 박용철
    • 한국유체기계학회 논문집
    • /
    • 제5권1호
    • /
    • pp.49-54
    • /
    • 2002
  • HANARO, 30 MW of research reactor, was installed at the depth of 13m in an open pool. The $90\%$ of primary coolant was designed to pass through the core and to remove the reaction heat of the cote. The rest, $10\%$, of the primary coolant was designed to bypass the core. And the reactor coolant through and bypass the core was inhaled at the top of chimney by the coolant pump to prevent the radiated gas from being lifted to the top of reactor pool. But, the part of core bypass coolant was not inhaled by the reactor coolant pump and reached at the top of reactor pool by natural convection, and increased the radiation lovel on the top of reactor pool. To reduce the radiation level by protecting the natural convection of the core bypass flow, the hot water layer (HWL, hereinafter) was installed with the depth of 1.2 m from the top of reactor pool. As the HWL was normally operated, the radiation level was reduced to five percent ($5\%$) in comparing with that before the installation of the HWL. When HANARO was operated at a higher temperature than the normal temperature of the HWL by operating the standby heater, it was found that the radiation level was more reduced than that before operation. To verify the reason, the heat loss of the HWL was calculated by Visual Basic Program. It was confirmed through the results that the larger the temperature difference between the HWL and reactor hall was, the more the evaporation loss increased. And it was verified that the radiation level above was reduced mote safely by increasing the capacity of heater.

하나로 수조 방사선 준위의 저감 특성 (Reduction Characteristics of Pool Top Radiation Level in HANARO)

  • 박용철
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.221-226
    • /
    • 2001
  • HANARO, 30MW of research reactor, was installed at the depth of 13m of open pool, The $90\%$ of primary coolant was designed to pass through the core and to remove the reaction heat of the core. The rest $10\%$, of the primary coolant was designed to bypass the core. And the reactor coolant through and bypass the core was inhaled at the top of chimney by the coolant pump to protect that the radiated gas was lifted to the top of reactor pool. But, the part of core bypass coolant was not inhaled by the reactor coolant pump and reached at the top of reactor pool by natural convection and increased the radiation level on the top of reactor pool. To reduce the radiation level by protecting the natural convection of the core bypass flow, the hot water layer (HWL, hereinafter) was installed with the depth of 1.2m from the top of reactor pool. As the HWL was normally operated, the radiation level was reduced to five percent ($5\%$) in comparing with that before the installation of the HWL. When HANARO was operated with higher temperature than the normal temperature of the HWL by operating the standby heater, it was found that the radiation level was more reduced than that before operation. To verify the reason, the heat loss of the HWL was calculated. It was confirmed through the results that the larger the temperature difference between the HWL and reactor hall was, the more the evaporation loss was increased. And it was verified that the radiation level above was reduced more safely by increasing the capacity of heater.

  • PDF

하나로 기체시료채취계통에서 생성된 응축수 억제를 위한 CFD 해석 (CFD Analysis to Suppress Condensate Water Generated in Gas Sampling System of HANARO)

  • 조성환;이종현;김대영
    • 방사성폐기물학회지
    • /
    • 제18권2_spc호
    • /
    • pp.327-336
    • /
    • 2020
  • HANARO (High-flux Advanced Neutron Application Reactor)는 우라늄의 핵분열 연쇄반응에서 생성된 중성자를 이용하여 다양한 연구개발을 수행하는 열출력 30 MW 규모의 연구용 원자로이다. 탈기탱크는 HANARO의 부속시설에 설치되어 있다. 탈기탱크는 내부환경요인으로 인해 기체오염물질을 발생시킨다. 탈기탱크는 기체오염물질을 허용 가능한 수준 이하로 유지하기위해 필요하며 기체시료채취판넬의 분석기에 의해 모니터링 된다. 응축수가 발생하여 기체시료채취판넬의 분석기 내부로 유입된다면, 분석기의 측정 챔버 내부에 부식이 발생하여 고장을 야기한다. 응축수의 생성 원인은 탈기탱크에 존재하는 기체가 분석기로 유입되는 과정에서 탈기탱크와 분석기사이 온도 차이다. 응축수 생성을 억제하고 계통 내부에 생성된 응축수를 효율적으로 제거하기 위해 탈기탱크와 기체시료채취판넬 사이에 히팅시스템이 설치되었다. 이 연구에서 우리는 히팅시스템의 효율성을 알고자 한다. 또한 Wall Condensation Model을 이용하여 유체 입구온도, 외부온도 및 히팅 케이블 설정온도 변화에 따른 파이프 온도와 평균응축량의 변화를 모델링하였다.

Measurements of In-phantom Neutron Flux Distribution at the HANARO BNCT Facility

  • Kim Myong Seop;Park Sang Jun;Jun Byung Jin
    • Nuclear Engineering and Technology
    • /
    • 제36권3호
    • /
    • pp.203-209
    • /
    • 2004
  • In-phantom neutron flux distribution is measured at the HANARO BNCT irradiation facility. The measurements are performed with Au foil and wires. The thermal neutron flux and Cd ratio obtained at the HANARO BNCT facility are $1.19{\times}10^9\;n/cm^{2}s$ and 152, respectively, at 24 MW reactor power. The measured in-phantom neutron flux has a maximum value at a depth of 3 mm in the phantom and then decreases rapidly. The maximum flux is about $25\%$ larger than that of the phantom surface, and the measured value at a depth of 22 mm in the phantom is about a half of the maximum value. In addition, the neutron beam is limited well within the aperture of the neutron collimator. The two-dimensional in-phantom neutron flux distribution is determined. Significant neutron irradiation is observed within 20 mm from the phantom surface. The measured neutron flux distribution can be utilized in irradiation planning for a patient.

USE OF A CENTRIFUGAL ATOMIZATION PROCESS IN THE DEVELOPMENT OF RESEARCH REACTOR FUEL

  • Kim, Chang-Kyu;Park, Jong-Man;Ryu, Ho-Jin
    • Nuclear Engineering and Technology
    • /
    • 제39권5호
    • /
    • pp.617-626
    • /
    • 2007
  • A centrifugal atomization process for uranium fuel was developed in order to fabricate high uranium density dispersion fuel for advanced research reactors. Spherical powders of $U_3Si$ and U-Mo were successfully fabricated and dispersed in aluminum matrices. Thermal and mechanical properties of dispersion fuel meat were characterized. Irradiation tests at the research reactor HANARO confirm the excellent performance of high uranium density dispersion fuel.

하나로 2차 냉각탑의 냉각팬 감속기의 진동분석 (Vibration Analysis of a Cooling Fan Gear Reducer of the Secondary Cooling Tower in HANARO)

  • 박용철
    • 대한기계학회논문집A
    • /
    • 제34권7호
    • /
    • pp.935-941
    • /
    • 2010
  • 하나로는 한국에 설치되어 있는 열출력 30MW의 개방 수조형 연구로 이다. 이는 발전로와 달리 원자로에서 발생하는 열을 이용하여 전기를 생산하는 것 대신에 원자로의 노심 온도를 유지하기 위하여 냉각탑을 통해 대기로 이 열을 냉각한다. 냉각탑 월간 점검 중에 냉각탑 4번의 냉각팬 감속기가 기준을 상회하는 고진동을 기록하였다. 본 연구의 목적은 고진동의 원인을 찾아 정상적으로 수리하기 위함이다. 연구 방법은 FFT 스펙트럼 기법을 적용하여 고진동의 원인을 분석하였다. 그 결과 고진동 주파수는 피니언 기어의 고유 진동수의 두 배인 354Hz이었다. 피니언 기어를 점검한 결과 이빨 표면이 깨져 있었다. 깨진 피니언 기어를 제거하고 새것으로 교체한 후에는 감속기는 정상적으로 작동하였다.