• Title/Summary/Keyword: research from the inside

Search Result 1,762, Processing Time 0.032 seconds

Electronic transport properties of linear carbon chains encapsulated inside single-walled carbon nanotubes

  • Tojo, Tomohiro;Kang, Cheon Soo;Hayashi, Takuya;Kim, Yoong Ahm
    • Carbon letters
    • /
    • v.28
    • /
    • pp.60-65
    • /
    • 2018
  • Linear carbon chains (LCCs) encapsulated inside the hollow cores of carbon nanotubes (CNTs) have been experimentally synthesized and structurally characterized by Raman spectroscopy and transmission electron microscopy. However, in terms of electronic conductivity, their transportation mechanism has not been investigated theoretically or experimentally. In this study, the density of states and quantum conductance spectra were simulated through density functional theory combined with the non-equilibrium Green function method. The encapsulated LCCs inside (5,5), (6,4), and (9,0) single-walled carbon nanotubes (SWCNTs) exhibited a drastic change from metallic to semiconducting or from semiconducting to metallic due to the strong charge transfer between them. On the other hand, the electronic change in the conductance value of LCCs encapsulated inside the (7,4) SWCNT were in good agreement with the superposition of the individual SWCNTs and the isolated LCCs owing to the weak charge transfer.

Numerical Analysis of Flow Distribution inside a Fuel Assembly with Split-type Mixing Vanes for the Development of Regulatory Guideline on the Applicability of CFD Software (전산유체역학 소프트웨어 적용성에 관한 규제 지침 개발을 위한 분할 형태 혼합날개가 장착된 연료집합체 내부유동 분포 수치해석)

  • Lee, Gong Hee;Cheong, Ae Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.10
    • /
    • pp.538-550
    • /
    • 2017
  • In a PWR (Pressurized Water Reactor), the appropriate heat removal from the surface of fuel rod bundle is important for ensuring thermal margins and safety. Although many CFD (Computational Fluid Dynamics) software have been used to predict complex flows inside fuel assemblies with mixing vanes, there is no domestic regulatory guideline for the comprehensive evaluation of CFD software. Therefore, from the nuclear regulatory perspective, it is necessary to perform the systematic assessment and prepare the domestic regulatory guideline for checking whether valid CFD software is used for nuclear safety problems. In this study, to provide systematic evaluation and guidance on the applicability of CFD software to the domestic nuclear safety area, the results of the sensitivity analysis for the effect of the discretization scheme accuracy for the convection terms and turbulence models, which are main factors that contribute to the uncertainty in the calculation of the nuclear safety problems, on the prediction performance for the turbulent flow distribution inside the fuel assembly with split-type mixing vanes were explained.

Performance Evaluation on the Pipelines for an Automated Vacuum Waste Collection System (생활폐기물 자동집하시설 이송관망 성능평가)

  • Jang, Choon-Man;Lee, Sang-Moon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.5
    • /
    • pp.26-32
    • /
    • 2015
  • This paper describes performance evaluation of design parameters, air velocity inside a pipeline and pressure along a pipeline, using experimental measurements in an automated vacuum waste collection system. Automatic robot having six cameras is introduced to analyze the internal pipeline conditions whether waste accumulates at the bottom of the pipeline or not. Throughout the experimental measurements of the pipeline having the various shapes, it is found that pressure and internal air velocity linearly increase along the pipeline from a waste inlet to a waste collection station while air density decreases due to the air compression effect with high pressure. Although air velocity inside the pipeline at a waste inlet keeps design velocity range between 20 m/s and 30 m/s, it is noted that air velocity near the waste collection station exceeds maximum design velocity of 30 m/s. Pressure increase per unit length is changed from 17.6 Pa/m to 18.9 Pa/m, which depends on the air velocity inside the pipeline. From the investigation inside the pipeline with CCTV loaded on an automated robot, waste accumulated at the bottom of the pipeline is mainly found at the downstream of a circular curved pipe, an inclined pipe and a bended pipe.

Temporal and Spatial Variation in Fish Larvae in Gamak Bay and Yeoja Bay, South Sea of Korea

  • Ryu, Jung-Hwa;Kim, Jeong-Bae;Kim, Jin-Koo
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.1
    • /
    • pp.55-61
    • /
    • 2011
  • Fish larvae were collected monthly with an ichthyoplankton net from 18 stations (including four stations located in eelgrass beds) in Gamak Bay and Yeoja Bay, southern Korea, in 2007. In total, 33 species of fish larvae were collected, of which Engraulis japonicus (48.5%), Tridentiger trigonocephalus (21.5%), and Omobranchus elegans (9.2%) were dominant. Dominant species varied seasonally: Hexagrammos otakii during December and January, Pholis nebulosa during January and March, Acanthogobius flavimanus in April, T. trigonocephalus in May, E. japonicus during June, July, September, and November, and Sillago japonica in August. Dominant species also differed between sites inside and outside the bays. Leiognathus nuchalis, O. elegans, and T. trigonocephalus were more abundant inside, while H. otakii was more abundant outside. From cluster analysis, three groups were identified according to sampling months (January-April, May-September, and October-December) and two groups according to station (inside and outside bays). The occurrence of small larvae of almost all major fish species indicated that the bays were used as spawning and nursery grounds. An exception was Lateolabrax japonicus, whose specimens were relatively large (>19 mm TL), suggesting that this fish may spawn offshore, with its juveniles approaching the bays with growth.

Development of Power Control System for Nuclear Power Plants (원자로 출력제어계통 개발)

  • Lee, J.M.;Kim, C.K.;Cheon, J.M.;Kim, H.J.;Kweon, S.M.
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.253-254
    • /
    • 2007
  • This paper deals with the development of power control system(PCS) for nuclear power plants. The PCS provides the control motive power to operate the CEDMs(Control Element Drive Mechanism) for reactivity control inside the reactor vessel. The CEDM is raise and lower the CEAs( Control Element Assemblies) inside the reactor core. The CEAs are constructed with the Boron-10 isotope which has a high microscopic cross section of absorption for thermal neutrons. This characteristic causes the addition of negative reactivity when a CEA is inserted and positive reactivity when it is withdrawn from the reactor core.

  • PDF

Exploratory Design Modifications for Enhancing Cyclone Performance

  • Kim Hyeon-Tae;Lee Gyu-Won
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.419-420
    • /
    • 2000
  • The present study introduces and describes the characteristics of the spiral guide and groove body cyclones for the first time. The spiral guide was set inside the cyclone body or the inside of the cyclone body was grooved circumferentially or vertically. Except for the cyclone body, all configurations were the same. The particle collection efficiency for a conventional cyclone (Figure 1) was measured under a series of flow rates ranging from 15 L/min up to 80 L/min, and was compared with that yielded using existing theories. (omitted)

  • PDF

Conservation of the Lacquer Artifacts Excavated from Suchon-ri, Gongju, Korea

  • Song, Ji Ae;Jeong, Ah-reum;Kwon, Hyeok-nam;Han, Woo-rim;Lee, Hyun-sang
    • Journal of Conservation Science
    • /
    • v.34 no.6
    • /
    • pp.549-556
    • /
    • 2018
  • In November 2011, various artifacts were excavated from the No. 8 stone-lined tomb in Suchon-ri, Gongju by the Chungnam Institute of History and Culture. These included artifacts with lacquered mainframe and silvery metal ornament. These were recovered together with soil and underwent conservation treatment. In this paper, we discuss the scientific analysis and conservation treatment of the lacquered artifacts excavated from the Suchon-ri site. Among our findings is that the artifacts have three layers of lacquer coating and the metal parts are primarily composed of Ag. As the artifacts were recovered with soil from the site, the soil was removed from underneath and inside the artifacts. The inside of the lacquerware was reinforced with rayon paper using 3% funori, and the metal was treated with acrylic resin after removing the acrylic resin previously used to recover the artifact, followed by cleaning. The metal was also internally reinforced with gauze. Finally, the interior reinforcement was made using PVA and resin in pulp and attached with funori to preserve the shape of the lacquerware, and the exposed rayon was finished with acrylic paint. The main advantages of this study are its review of conservation treatment strategies for lacquer artifacts whose numbers have recently increased, and the application of new conservation treatment methods.

Measurement of the Shape of the Cold Neutron Source Vertical Hole by Ultrasonic Wave Sensor (초음파센서를 이용한 냉중성자원 수직공 형상측정)

  • Park, Guk-Nam;Choe, Chang-Ung;Sim, Cheol-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2167-2173
    • /
    • 2000
  • The HANARO (High-flux Advanced Neutron Application Reactor) has operated since 1995. The Cold Neutron(CN) hole was implanted in the reflector tank from the design stage. Before a vacuum chamber and a moderator cell for the cold neutron source are installed into the CN hole, it is necessary to measure the exact size of the inside diameter and thickness of the CN hole to prevent the interference problem. Due to inaccessibility and high radiation field in the CN hole, a mechanical measurement method is not permitted. The immersion ultrasonic technique is considered as the best method to measure the thickness and the diameter. The 4 axis manipulator of the 2 channel of a sensor module was fabricated. The transducer of 10 MHz results in 0.03 nun of resolution. The inside diameter and thickness for 550 points of the CN hole were measured using 2 channel ultrasonic sensors. The results showed that the thickness is in the range of 13-6.7 mm and inside diameter is in the range of o 156-165. These data will be a good reference in the design of a cold neutron source facility.

Sensitivity Study of the Flow-through Dynamic Flux Chamber Technique for the Soil NO Emissions

  • Kim Deug-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.E3
    • /
    • pp.75-85
    • /
    • 2005
  • A mathematical sensitivity analysis of the flow-through dynamic flux chamber technique, which has been utilized usually for various trace gas flux measurement from soil and water surface, was performed in an effort to provide physical and mathematical understandings of parameters essential for the NO flux calculation. The mass balance equation including chemical reactions was analytically solved for the soil NO flux under the steady state condition. The equilibrium concentration inside the chamber, $C_{eq}$, was found to be determined mainly by the balance between the soil flux and dilution of the gas concentration inside the chamber by introducing the ambient air. Surface deposition NO occurs inside the chamber when the $C_{eq}$ is greater than the ambient NO concentration ($C_{0}$) introducing to the chamber; NO emission from the soil occurs when the $C_{eq}$ is less than the ambient NO concentration. A sensitivity analysis of the significance of the chemical reactions of NO with the reactive species (i.e. $HO_{2},/CH_{3}O_{2},/O_{3}$) on the NO flux from soils was performed. The result of the analysis suggests that the NO flux calculated in the absence of chemical reactions and wall loss could be in error ranges from 40 to $85\%$ to the total flux.

Numerical Analysis for Flow Distribution inside a Fuel Assembly with Swirl-type Mixing Vanes (선회 형태 혼합날개가 장착된 연료집합체 내부유동 분포 수치해석)

  • Lee, Gonghee;Shin, Andong;Cheong, Aeju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.5
    • /
    • pp.186-194
    • /
    • 2016
  • As a turbulence-enhancing device, a mixing vane installed at a spacer grid of the fuel assembly plays a role in improving the convective heat transfer by generating either swirl flow in the subchannels or cross flow between fuel rod gaps. Therefore, both configuration and arrangement pattern of a mixing vane are important factors that determine the performance of a mixing vane. In this study, in order to examine the flow distribution features inside $5{\times}5$ fuel assembly with swirl-type mixing vanes used in benchmark calculation of OECD/NEA, simulations were conducted with commercial CFD software ANSYS CFX R.14. Predicted results were compared to data measured from MATiS-H (Measurement and Analysis of Turbulent Mixing in Subchannels-Horizontal) test facility. In addition, the effect of swirl-type mixing vanes on flow pattern inside the fuel assembly was described.