• Title/Summary/Keyword: resaturation

Search Result 6, Processing Time 0.021 seconds

Water Diffusion and Resaturation in Unsaturated Compacted Bentonite (불포화 압축 벤토나이트에서의 수확산 및 재포화)

  • 고은옥;이재완;조원진;현재혁;전관식
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.216-220
    • /
    • 1998
  • Experimental studies were carried out to investigate water diffusion in unsaturated compacted bentonite for a landfill of hazardous wastes. Water content distributions were measured and water diffusion coefficients were determined when the dry densities of compacted bentonite were in the range of 1.4 - 1.8 g/㎤. Resaturation times were also calculated to analyze the ability of the compacted bentonite to retard water movement. The results obtained were as follows: Diffusion model described properly the water migration in unsaturated compacted bentonite. Water diffusion coefficients ranged from 4.30$\times$10$^{-6}$ $\textrm{cm}^2$/sec to 1.93$\times$10$^{-6}$ $\textrm{cm}^2$/sec, and decreased with increasing the dry density. The dry density of compacted bentonite was found to be an important factor to control the resaturation time by water. This study suggests that the domestic compacted bentonite should be a good barrier material against water movement in a landfill of hazardous wastes.

  • PDF

Determination of Water Content in Compacted Bentonite Using a Hygrometer and Its Application (습도계를 이용한 압축벤토나이트 내 함수율 결정 및 적용)

  • Lee, Jae-Owan;Cho, Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.2
    • /
    • pp.101-107
    • /
    • 2009
  • Investigation of resaturation and thermal-hydro-mechanical behavior for the buffer of a repository requires measuring the water content of compacted bentonite. This study investigated the relative humidity of compacted bentonites using a humidity sensor (Vaisala HMT 334) applicable under high temperature and pressure, and then conducted a multi-regression analysis based on the measured results to determine relationships among the water content, relative humidity, and temperature. The relationships for the compacted bentonites with the dry densities of 1,500 $kg/m^3$ and 1,600 $kg/m^3$ were expressed as ${\omega}=0.196RH-0.029T+1.391({r^2=0.96)}$ and ${\omega}=0.199RH-0.029T+2.596({r^2=0.98)}$, respectively. These were then used to interpret the resaturation of bentonite blocks in the KENTEX test.

  • PDF

Development of the Safety Assessment Code (CALM) for the Disposal of Low-and Intermediate-Level Radioactive Waste (중ㆍ저준위 방사성폐기물 처분안정성 평가코드(CALM) 개발)

  • Han, Kyong-Won;Cho, Won-Jin;Lee, Han-Soo;Lee, Youn-Myoung;Park, Hee-Sung;Suh, Kyung-Suk;Park, Heu-Joo-;Park, Hun-Hwee
    • Nuclear Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.36-44
    • /
    • 1990
  • A safety assessment computer code CALM (Computer program of Assessment for LILW Management) is developed for the theoretical prediction of long-term safety of low-and intermediate-level radioactive waste disposal. CALM is composed of three submodels, which are the resaturation model, the geosphere migration model, and the radiation dose model. For the verification of its usefulness, the safety assessment of an assumed waste repository is performed. The results show that the computer code, CALM developed through this study can be a useful tool for the safety assessment of low- and intermediate-level radioactive waste repository.

  • PDF

Effects of Excavation Damaged Zone on Thermal Analysis of Multi-layer Geological Repository (다층 심지층처분장 열해석에 미치는 암반손상대의 영향)

  • Cho, Won-Jin;Kim, Jin-Seop;Kim, Geon Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.75-94
    • /
    • 2019
  • As the present single-layer repository concept requires too large an area for the site of the repository, a multi-layer repository concept has been suggested to improve the disposal density. The effects of the excavation damaged zone around the multi-layer repository constructed in the deep host rock on the temperature distribution in the repository were analyzed. For the thermal analysis of the multi-layer repository, the hydrothermal model was used to consider the resaturation process occurring in the buffer, backfill and rock. The existence of an excavation damaged zone has a significant effect on the temperature distribution in the repository, and the maximum peak temperatures of double-layer and triple-layer repositories can rise to $7^{\circ}C$ and $12^{\circ}C$, respectively depending on the size of the excavation damaged zone and the degree of decrease of the thermal conductivity. The dominant factor affecting the peak temperature in the multi-layer repository is the decrease of thermal conductivity in the excavation damaged zone, and the excavation damaged zone formed around the deposition hole has more significant effects on the peak temperature than does the excavation damaged zone formed around the disposal tunnel.

The Patterns of Change in Arterial Oxygen Saturation and Heart Rate and Their Related Factors during Voluntary Breath holding and Rebreathing (자발적 호흡정지 및 재개시 동맥혈 산소포화도와 심박수의 변동양상과 이에 영향을 미치는 인자)

  • Lim, Chae-Man;Kim, Woo-Sung;Choi, Kang-Hyun;Koh, Youn-Suck;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.4
    • /
    • pp.379-388
    • /
    • 1994
  • Background : In sleep apnea syndrome, arterial oxygen saturation($SaO_2$) decreases at a variable rate and to a variable degree for a given apneic period from patient to patient, and various kinds of cardiac arrythmia are known to occur. Factors supposed to affect arterial oxygen desaturation during apnea are duration of apnea, lung voulume at which apnea occurs, and oxygen consumption rate of the subject. The lung serves as preferential oxygen source during apnea, and there have been many reports related with the influence of lung volume on $SaO_2$ during apnea, but there are few, if any, studies about the influence of oxygen consumption rate of an individual on $SaO_2$ during breath holding or about the profile of arterial oxygen resaturation after breathing resumed. Methods : To investigate the changes of $SaO_2$ and heart rate(HR) during breath holding(BH) and rebreathing(RB) and to evaluate the physiologic factors responsible for the changes, lung volume measurements, and arterial blood gas analyses were performed in 17 healthy subjects. Nasal airflow by thermistor, $SaO_2$ by pulse oxymeter and ECG tracing were recorded on Polygraph(TA 4000, Gould, U.S.A.) during voluntary BH & RB at total lung capacity(TLC), at functional residual capacity(FRC) and at residual volume(RV), respectively, for the study subjects. Each subject's basal metabolic rate(BMR) was assumed on Harris-Benedict equation. Results: The time needed for $SaO_2$ to drop 2% from the basal level during breath holding(T2%) were $70.1{\pm}14.2$ sec(mean${\pm}$standard deviation) at TLC, $44.0{\pm}11.6$ sec at FRC, and $33.2{\pm}11.1$ sec at RV(TLC vs. FRC, p<0.05; FRC vs. RV, p<0.05). On rebreathing after $SaO_2$ decreased 2%, further decrement in $SaO_2$ was observed and it was significantly greater at RV($4.3{\pm}2.1%$) than at TLC($1.4{\pm}1.0%$)(p<0.05) or at FRC($1.9{\pm}1.4%$)(p<0.05). The time required for $SaO_2$ to return to the basal level after RB(Tr) at TLC was not significantly different from those at FRC or at RV. T2% had no significant correlation either with lung volumes or with BMR respectively. On the other hand, T2% had significant correlation with TLC/BMR(r=0.693, p<0.01) and FRC/BMR (r=0.615, p<0.025) but not with RV/BMR(r=0.227, p>0.05). The differences between maximal and minimal HR(${\Delta}HR$) during the BH-RB manuever were $27.5{\pm}9.2/min$ at TLC, $26.4{\pm}14.0/min$ at RV, and $19.1{\pm}6.0/min$ at FRC which was significantly smaller than those at TLC(p<0.05) or at RV(p<0.05). The mean difference of 5 p-p intervals before and after RB were $0.8{\pm}0.10$ sec and $0.72{\pm}0.09$ sec at TLC(p<0.001), $0.82{\pm}0.11$ sec and $0.73{\pm}0.09$ sec at FRC(p<0.025), and $0.77{\pm}0.09$ sec and $0.72{\pm}0.09$ sec at RV(p<0.05). Conclusion Healthy subjects showed arterial desaturation of various rates and extent during breath holding at different lung volumes. When breath held at lung volume greater than FRC, the rate of arterial desaturation significantly correlated with lung volume/basal metabolic rate, but when breath held at RV, the rate of arterial desaturation did not correlate linearly with RV/BMR. Sinus arrythmias occurred during breath holding and rebreathing manuever irrespective of the size of the lung volume at which breath holding started, and the amount of change was smallest when breath held at FRC and the change in vagal tone induced by alteration in respiratory movement might be the major responsible factor for the sinus arrythmia.

  • PDF