• Title/Summary/Keyword: required coefficient of friction

Search Result 78, Processing Time 0.025 seconds

Tribological Characteristics of ABS-like Resin According to Silicon Oil Viscosity (실리콘 오일 점도에 따른 ABS-like 레진의 트라이볼로지 특성)

  • Park, Seonghyun;Son, Jungyu;Woo, Seongwoong;Ryu, Euijin;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.365-370
    • /
    • 2020
  • Recently, additive manufacturing (AM) technology has been applied to various industries such as automotive, aviation, medical, and electronics. Most prior studies are limited to the mechanical properties of printed materials, and few studies are being conducted on their tribological characteristics. However, the friction and wear characteristics of the material should be studied in order to utilize the components manufactured using AM technology as mechanical parts. In this study, the friction and wear characteristics of acrylonitrile-butadiene-styrene (ABS)-like resin printed with stereo lithography apparatus (SLA) 3D printing are evaluated according to the viscosity of silicon oil lubricant using a ball-on-disk experiment. Lubricants with a viscosity of 500, 1000, and 2000 cSt are prepared for the experiment. If silicon oil lubricants are used during the ball-on-disk test, the coefficient of friction (COF) and wear rates are significantly reduced, and the higher the viscosity of the lubricant, the lower will be the COF and wear rates. It is also verified that the temperature of the specimen owing to friction also decreases according to the viscosity of the lubricant. This is because of the silicon oil film thickness, and the higher the viscosity of the lubricant, the thicker will be the oil film. More studies on the tribological characteristics of 3D printing materials and suitable lubricants will be required to use 3D printed parts as mechanical elements.

Reliability Analysis of Slab Transfer Equipment in Hot Rolling Furnace (열간압연 가열로 슬라브 이송장치 신뢰도 해석)

  • Bae, Young-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.6-14
    • /
    • 2006
  • The development of automatic production systems have required intelligent diagnostic and monitoring functions to overcome system failure and reduce production loss by the failure. In order to perform accurate operations of the intelligent system, implication about total system failure and fault analysis due to each mechanical component failures are required. Also solutions for repair and maintenance can be suggested from these analysis results. As an essential component of a mechanical system, a bearing system is investigated to define the failure behavior. The bearing failure is caused by lubricant system failure, metallurgical deficiency, mechanical condition(vibration, overloading, misalignment) and environmental effects. This study described slab transfer equipment fault train due to stress variation and metallurgical deficiency from lubricant failure by using FTA.

Robust Wheel Slip Control for Brake-by-Wire System (Brake-by-Wire 시스템을 위한 강인한 휠 슬립 제어)

  • Hong Daegun;Huh Kunsoo;Kang Hyung-Jin;Yoon Paljoo;Hwang Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.102-109
    • /
    • 2005
  • Wheel-slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional ABS systems. But, in order to achieve the superior braking performance through the wheel-slip control, real-time information such as the tire braking force is required. For example, in the case of EHB (Electro-Hydraulic Brake) systems, the tire braking force cannot be measured directly, but can be approximated based on the characteristics of the brake disk-pad friction. The friction characteristics can change significantly depending on aging of the brake, moisture on the contact area, heat etc. In this paper, a wheel slip The proposed wheel slip control system is composed of two subsystems: braking force monitor and robust slip controller In the brake force monitor subsystem, the tire braking forces as well as the brake disk-pad friction coefficient are estimated considering the friction variation between the brake pad and disk. The robust wheel slip control subsystem is designed based on sliding mode control methods and follows the target wheel-slip using the estimated tire braking forces. The proposed sliding mode controller is robust to the uncertainties in estimating the braking force and brake disk-pad friction. The performance of the proposed wheel-slip control system is evaluated in various simulations.

Fault diagnosis of walking beam roller bearing by FTA (FTA(Fault Tree Analysis)기법을 이용한 이송용 대부하 베어링 고장 진단)

  • Bae, Y.H.;Lee, H.K.;Lee, S.J.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.110-123
    • /
    • 1994
  • The development of automatic production systems have required inteligent diagnostic and monitoring function to repair system failure and reduce production loss by the failure. In order to perform accurate functions of intelligent system, inferencing about total system failure and fault analysis due to each mechanical component failures are required. Also the solution about repair and maintenance can be suggested from these analysis results. As an essential component of mechanical system, a bearing system is investigated to define the failure behavior. The bearing failure is caused by lubricant system failure, metallurgical defficiency, mechanical condition(vibration, overloading, misalignment) and environmental effect. This study described roller bearing fault train due to stress variation and metallurgical defficiency from lubricant failure by using FTA.

  • PDF

Pile bearing capacity prediction in cold regions using a combination of ANN with metaheuristic algorithms

  • Zhou Jingting;Hossein Moayedi;Marieh Fatahizadeh;Narges Varamini
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.417-440
    • /
    • 2024
  • Artificial neural networks (ANN) have been the focus of several studies when it comes to evaluating the pile's bearing capacity. Nonetheless, the principal drawbacks of employing this method are the sluggish rate of convergence and the constraints of ANN in locating global minima. The current work aimed to build four ANN-based prediction models enhanced with methods from the black hole algorithm (BHA), league championship algorithm (LCA), shuffled complex evolution (SCE), and symbiotic organisms search (SOS) to estimate the carrying capacity of piles in cold climates. To provide the crucial dataset required to build the model, fifty-eight concrete pile experiments were conducted. The pile geometrical properties, internal friction angle 𝛗 shaft, internal friction angle 𝛗 tip, pile length, pile area, and vertical effective stress were established as the network inputs, and the BHA, LCA, SCE, and SOS-based ANN models were set up to provide the pile bearing capacity as the output. Following a sensitivity analysis to determine the optimal BHA, LCA, SCE, and SOS parameters and a train and test procedure to determine the optimal network architecture or the number of hidden nodes, the best prediction approach was selected. The outcomes show a good agreement between the measured bearing capabilities and the pile bearing capacities forecasted by SCE-MLP. The testing dataset's respective mean square error and coefficient of determination, which are 0.91846 and 391.1539, indicate that using the SCE-MLP approach as a practical, efficient, and highly reliable technique to forecast the pile's bearing capacity is advantageous.

An Evaluation of Slip Coefficient in High Strength Bolt Joint using Zn/Al Metal Spray Corrosion Resistance Method (Zn/Al 금속용사 방식공법을 적용한 고력볼트 접합부의 미끄럼계수 평가)

  • Kim, Tae-Soo;Lee, Han-Seung;Tae, Sung-Ho;Ahn, Hyun-Jin;Oh, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.114-122
    • /
    • 2007
  • In high strength bolted joints, the corrosion of base material causes the reduction of slip resistance of the joints. In this study, tensile tests on slip-critical joints utilizing Zn/Al metal spraying corrosion resistance method were carried out in order to prevent the corrosion and meet the required mechanical characteristics of joints. In addition, slip coefficient and surface roughness were calculated. The key parameters were surface finishing condition and thickness of coating with the identical geometry in all specimens. From the results, it is found that the slip coefficient of the joints with coated finish after sand blast treatment as well as those of non-coated joints with only sand blast treatment were similar or superior to 0.45, which is a specification criteria of slip coefficient in friction-typed joints.

Relationship between RCOF Calculated from the Results of Gait Analysis and CSR Measured Using O-Y·PSM (O-Y·PSM에 의한 CSR과 보행분석에 의한 RCOF와의 관계)

  • Roh, Yong-Woon;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.59-61
    • /
    • 2013
  • The purpose of this study was to present the necessary data concerning the selection and development of floor-coverings in view of slipperiness by comparing the relationship between CSR measured with O-Y·PSM and RCOF calculated from the result of gait analysis. CSR was calculated from maximum tensile load(Pmax) divided by perpendicular load(785N) when pulled 18 degrees upward the moment the bottom of the slip piece contacted the surface of the test piece. RCOF was calculated based on Fy/Fz from when horizontal load reached the maximum point within the sections from the moment the front of outsole touched the test piece to when pulled off the test piece. The results from the research were as follows: (1) Range of CSR was 0.15-1.02, which meant the differences of slipperiness of the test pieces definitely showed up. (2) RCOF are inadequate to express the characteristic about the slipperiness of the floors, since there were no differences between the test pieces.

  • PDF

Analysis of Heat Transfer of a Magnetic Fluid Seal (자성유체씰의 열전달 해석)

  • Kim, Ock-Hyun;Lee, Hee-Bok;Lee, Min-Ki;Hong, Jeong-Hui;Kwak, Yong-Woon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.365-369
    • /
    • 2010
  • Magnetic fluid seal is characterized by its simple design, low friction and being dustless. Those advantages are deduced from the fact that the sealing element is not a solid such as rubber or plastic but it is a fluid. Those are critical for application to a rotating shaft which is inserted into a vacuum chamber where high level of vacuum and cleanness are required. For the reason the magnetic fluid seal has become a standard for vacuum chambers for semiconductor and LCD processing. It should be noted that its sealing performance is sensitive to temperature. If necessary, water cooling should be considered. Thus anticipation of the temperature distribution of the magnetic fluid seal is important before applying it. In this paper an FEM analysis of the heat transfer has been executed and compared with experimental results. An overall convective heat transfer coefficient has been adopted for the analysis, which results in satisfactory consistency of the theoretical and experimental results.

Pipe Network Analysis for Liquid Rocket Engine with Gas-generator Cycle (액체로켓엔진 가스발생기 사이클의 배관망 해석)

  • Lim, Tae-Kyu;Lee, Sang-Bok;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.52-57
    • /
    • 2012
  • A liquid rocket system consists of a combustion chamber, a gas generator, a turbo pump, and a turbine, etc. Each component is connected by supply components such as valves, pipes, and orifices. Since each component has a combined effect on engine performance, preliminary analysis for overall system must be required before the conceptual design stage. Comprehensive analysis program considered the supply system has not been developed yet. In this paper, a supply component model of the liquid rocket engine has been designed after verification of each component. The gas generator cycle with supply components has been composed. The results of the cycle has been compared to those of the F-1 engine with the representative gas generator cycle.

  • PDF

Slip Behavior of Friction Type High-Tension Bolted Joints with Oversize Hole (과대공을 갖는 고장력 볼트 마찰이음부의 미끄러짐 거동)

  • Cho, Sun Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.301-307
    • /
    • 1997
  • In field fabrication of steel members, the oversize hole is frequently required due to reaming and mismatching. But, there are no provisions and investigations about oversize hole in the Korean specifications. So, in this study, the tension test of friction type high-tention bolted joints is performed with parameters of bolt hole size, surface treatment and tightening force, and investigate the effect of slip behavior with those parameters. From the results, the enough tightening force is needed to obtain some degree slip load in shot blast treatment case, although tightening force is reduced somewhat, it is no problem to guarantee slip load in zincrich primer case. The slip behavior of joints with oversize hole(26mm) is similar to the slip behavior of joints with hole of nominal size.

  • PDF