• Title/Summary/Keyword: reproductive hormones

Search Result 196, Processing Time 0.02 seconds

Roles of the Insulin-like Growth Factor System in the Reproductive Function;Uterine Connection (Insulin-like Growth Factor Systems의 생식기능에서의 역할;자궁편)

  • Lee, Chul-Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.23 no.3
    • /
    • pp.247-268
    • /
    • 1996
  • It has been known for a long time that gonadotropins and steroid hormones play a pivotal role in a series of reproductive biological phenomena including the maturation of ovarian follicles and oocytes, ovulation and implantation, maintenance of pregnancy and fetal growth & development, parturition and mammary development and lactation. Recent investigations, however, have elucidated that in addition to these classic hormones, multiple growth factors also are involved in these phenomena. Most growth factors in reproductive organs mediate the actions of gonadotropins and steroid hormones or synergize with them in an autocrine/paracrine manner. The insulin-like growth factor(IGF) system, which is one of the most actively investigated areas lately in the reproductive organs, has been found to have important roles in a wide gamut of reproductive phenomena. In the present communication, published literature pertaining to the intrauterine IGF system will be reviewed preceded by general information of the IGF system. The IGF family comprises of IGF-I & IGF-II ligands, two types of IGF receptors and six classes of IGF-binding proteins(IGFBPs) that are known to date. IGF-I and IGF-II peptides, which are structurally homologous to proinsulin, possess the insulin-like activity including the stimulatory effect of glucose and amino acid transport. Besides, IGFs as mitogens stimulate cell division, and also play a role in cellular differentiation and functions in a variety of cell lines. IGFs are expressed mainly in the liver and messenchymal cells, and act on almost all types of tissues in an autocrine/paracrine as well as endocrine mode. There are two types of IGF receptors. Type I IGF receptors, which are tyrosine kinase receptors having high-affinity for IGF-I and IGF-II, mediate almost all the IGF actions that are described above. Type II IGF receptors or IGF-II/mannose-6-phosphate receptors have two distinct binding sites; the IGF-II binding site exhibits a high affinity only for IGF-II. The principal role of the type II IGF receptor is to destroy IGF-II by targeting the ligand to the lysosome. IGFs in biological fluids are mostly bound to IGFBP. IGFBPs, in general, are IGF storage/carrier proteins or modulators of IGF actions; however, as for distinct roles for individual IGFBPs, only limited information is available. IGFBPs inhibit IGF actions under most in vitro situations, seemingly because affinities of IGFBPs for IGFs are greater than those of IGF receptors. How IGF is released from IGFBP to reach IGF receptors is not known; however, various IGFBP protease activities that are present in blood and interstitial fluids are believed to play an important role in the process of IGF release from the IGFBP. According to latest reports, there is evidence that under certain in vitro circumstances, IGFBP-1, -3, -5 have their own biological activities independent of the IGF. This may add another dimension of complexity of the already complicated IGF system. Messenger ribonucleic acids and proteins of the IGF family members are expressed in the uterine tissue and conceptus of the primates, rodents and farm animals to play important roles in growth and development of the uterus and fetus. Expression of the uterine IGF system is regulated by gonadal hormones and local regulatory substances with temporal and spatial specificities. Locally expressed IGFs and IGFBPs act on the uterine tissue in an autocrine/paracrine manner, or are secreted into the uterine lumen to participate in conceptus growth and development. Conceptus also expresses the IGF system beginning from the peri-implantation period. When an IGF family member is expressed in the conceptus, however, is determined by the presence or absence of maternally inherited mRNAs, genetic programming of the conceptus itself and an interaction with the maternal tissue. The site of IGF action also follows temporal (physiological status) and spatial specificities. These facts that expression of the IGF system is temporally and spatially regulated support indirectly a hypothesis that IGFs play a role in conceptus growth and development. Uterine and conceptus-derived IGFs stimulate cell division and differentiation, glucose and amino acid transport, general protein synthesis and the biosynthesis of mammotropic hormones including placental lactogen and prolactin, and also play a role in steroidogenesis. The suggested role for IGFs in conceptus growth and development has been proven by the result of IGF-I, IGF-II or IGF receptor gene disruption(targeting) of murine embryos by the homologous recombination technique. Mice carrying a null mutation for IGF-I and/or IGF-II or type I IGF receptor undergo delayed prenatal and postnatal growth and development with 30-60% normal weights at birth. Moreover, mice lacking the type I IGF receptor or IGF-I plus IGF-II die soon after birth. Intrauterine IGFBPs generally are believed to sequester IGF ligands within the uterus or to play a role of negative regulators of IGF actions by inhibiting IGF binding to cognate receptors. However, when it is taken into account that IGFBP-1 is expressed and secreted in primate uteri in amounts assessedly far exceeding those of local IGFs and that IGFBP-1 is one of the major secretory proteins of the primate decidua, the possibility that this IGFBP may have its own biological activity independent of IGF cannot be excluded. Evidently, elucidating the exact role of each IGFBP is an essential step into understanding the whole IGF system. As such, further research in this area is awaited with a lot of anticipation and attention.

  • PDF

Occurrence of Ovario-uterine Disease and Hormonal Therapeutic Effect in Dairy Cows (젖소에서 난소.자궁 질병 발생과 호르몬 치료 효과)

  • Ryu, Jae-Sun;Park, Chul-Ho;Kim, Sang-Il;Bae, Jae-Han;Suh, Guk-Hyun;Kim, Jae-Pung;Park, Sang-Guk;Lee, Suk-Kyung;Son, Chang-Ho;Oh, Ki-Seok
    • Journal of Embryo Transfer
    • /
    • v.26 no.1
    • /
    • pp.37-43
    • /
    • 2011
  • A total 5,946 cows from 24 dairy farms were carried out for the improvement of reproductive performance. Dairy cows in post-parturition 30 day were performed periodic reproductive examination to check for recovery of post-parturition ovary and uterus and for the early diagnosis of reproductive disease. The results obtained from this studies were as follow. The result of 1,126 cows with ovario-uterine disease were 579 slient heat and error of estrus detection (51.4%), 296 ovarian disease (26.3%), 248 uterine disease (22%), mummification and freematin were each 1 head (0.1%), respectively. Hormonal therapeutic effects were follicular cyst 81.5%, luteal cyst 90.7%, endometritis 86.9%, mucometra 90.1%, pyometra 60.9%, respectively. In cows, even if the 1st treatment fails, 2nd, 3rd treatment were performed. Therapeutic effect of 2nd, 3rd were reduced, but the number of cured cows were gradually increased. The cured cows after hormonal treatment were performed service repeatedly and the cumulative conception rate were increased. The cows treated with hormones at first service, the conception rate were follicular cyst 26%, luteal cyst 64.1%, endometritis 38.7%, mucometra 40%, pyometra 20.5%, respectively. The cumulative conception rates were increased by repeated service follicular cyst 57.3%, luteal cyst 84.6%, endometritis 67%, mucometra 75%, pyometra 64.1%, respectively.

Estrogen Function in Male Rodents Fertility (설치류 수컷 생식력에 미치는 에스트로겐의 효과)

  • Kim, Ji-Hyang;Kim, Jin-Kyu;Yoon, Yong-Dal
    • Development and Reproduction
    • /
    • v.9 no.2
    • /
    • pp.85-93
    • /
    • 2005
  • Estrogens are known as the steroid hormones and essential regulators of developments, differentiations, and fertility in animals including humans. Recently, classic focus on estrogens which are considered as female hormone is changing in the whole field of reproductive endocrinology. Especially, interest in estrogen functions in male reproduction is increasing more and more, as numerous studies about the endocrine disruptors, interrupting the endocrine system, are being carried out. To understand exactly the function of estrogen in a male reproductive system, a summary for estrogen receptors upon developmental distributions in testis will be useful. In addition to the regulatory roles of estrogen in male, unexpected exposure to exogenous estrogens causes defects of differentiation of male reproductive system and an injury of spermatogenesis. Also, this review highlights the indicator of exogenous estrogens to perturb male fertility. These approaches would give tile practical information about estrogen roles in male development and reproduction.

  • PDF

The Reproductive Patterns and Clinical Application of Endangered Common Chimpanzees by Monitoring the Steroid Hormone Measurements in Fecal Samples (분변내 스테로이드 호르몬의 측정을 통한 멸종 위기 침팬지의 번식형태와 임상적용)

  • Jung, So-Young;Kim, Mi-Young;Jeong, Yu-Jeong;Jang, Yu-Ni;Lim, Yang-Mook;Yoon, Yong-Dal
    • Development and Reproduction
    • /
    • v.15 no.2
    • /
    • pp.167-172
    • /
    • 2011
  • To monitor the reproductive patterns of endangered common chimpanzee including annual reproductive cycle, amenorrhea, breeding season, and pregnancy diagnosis, Time-Resolved Fluorescence Immuno Assay (TR-FIA) was used to trace MRH (estradiol, progesterone, testosterone) and human chorionic gonadotropin (HCG). In result of this research, age was not the important factor in determining the reproduction capability in common chimpanzee; it was rather greatly influenced by the combination of various factors such as individual's fertilizing ability, presence of obstetrical diseases, the pattern of mating behavior, and the mental communication under the introduction of a mating partner. This research will play an important role in operating conservation project for common chimpanzees and can be extended also for shedding new light on understanding human menopause and obstetrical diseases.

Comparison of the deleterious effects of yaji and cadmium chloride on testicular physiomorphological and oxidative stress status: The gonadoprotective effects of an omega-3 fatty acid

  • Ekhoye, Ehitare Ikekhuamen;Olerimi, Samson Eshikhokhale;Ehebha, Santos Ehizokhale
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.47 no.3
    • /
    • pp.168-179
    • /
    • 2020
  • Objective: This study investigated testicular oxidative stress status and physiomorphological function in Wistar rats fed with yaji and cadmium chloride (CdCl2). Methods: Sixty male albino Wistar rats (12 per group) were randomly assigned to five groups: group I (control), group II (300 mg/kg.bw of yaji), group III (500 mg/kg.bw of yaji), group IV (2.5 mg/kg.bw of CdCl2), and group V (2.5 mg/kg.bw of yaji+4 mg/kg.bw omega-3). Each group was evenly subdivided into two subgroups and treatment was administered for 14 days and 42 days, respectively. Semen quality (sperm count, progressive motility, normal morphology, and gonadosomatic index), hormones (testosterone, follicle-stimulating hormone, and luteinizing hormone), testicular oxidative stress markers (superoxide dismutase, catalase, glutathione peroxidase, and malonaldehyde) and testicular histomorphological features were examined. Results: Yaji caused significant (p< 0.05) dose- and duration-dependent reductions in semen quality, the gonadosomatic index, testosterone, follicle-stimulating hormone, and luteinizing hormone. Yaji also caused significant (p< 0.05) dose- and duration-dependent decreases in superoxide dismutase, catalase, and glutathione peroxidase activity, as well as increased testicular malonaldehyde levels. Yaji induced distortions in the testicular histological architecture. CdCl2 damaged testicular function by significantly (p< 0.05) reducing semen quality, reproductive hormone levels, and oxidative stress markers in albino Wistar rats. CdCl2 also altered the histology of the testis. Conclusion: This study shows that yaji sauce has similar anti-fertility effects to those of CdCl2, as it adversely interferes with male reproduction by impairing oxidative stress markers and the function and morphological features of the testis.

Effect of Feeding Time Shift on the Reproductive System in Male Rats

  • Kwak, Byung-Kook;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.16 no.1
    • /
    • pp.53-58
    • /
    • 2012
  • Circadian rhythmicity (e.g. secretory pattern of hormones) plays an important role in the control of reproductive function. We hypothesized that the alteration of feeding pattern via meal time shift/restriction might disrupt circadian rhythms in energy balance, and induce changes in reproductive activities. To test this hypothesis, we employed simple animal model that not allowing $ad$ $libitum$ feeding but daytime only feeding. The animals of $ad$ $libitum$ feeding group (Control) have free access to food for 4 weeks. The day feeding (=reverse feeding, RF) animals (RF group) have restricted access to food during daytime (0900-1800) for 4 weeks. After completing the feeding schedules, body weights, testis and epididymis weights of animals from both group were not significantly different. However, the weights of seminal vesicle (control : RF group = $0.233{\pm}0.014g$ : $0.188{\pm}0.009g$, $p$<0.01) and prostate (control : RF group = $0.358{\pm}0.015g$ : $0.259{\pm}0.015g$, $p$<0.001) were significantly lower in RF group animals. The mRNA levels of pituitary common alpha subunit ($C{\alpha}$; control : RF group = $1.0{\pm}0.0699$ AU : $0.1923{\pm}0.0270$ AU, $p$<0.001) and $FSH{\beta}$ (control : RF group = $1.0{\pm}0.1489$ AU : $0.5237{\pm}0.1088$ AU, $p$<0.05) were significantly decreased in RF group. The mRNA levels of ACTH were not significantly different. We were unable to find any prominent difference in the microstructures of epididymis, and there were slight alterations in those of seminal vesicles after 4 weeks of reversed feeding when compared to control samples. The present study demonstrates that the shift and/or restriction of feeding time could alter the pituitary gonadotropin expression and the weights of seminal vesicle and prostate in rats. These data suggest the lowered gonadotropin inputs may decrease androgen secretion form testis, and consequently results in poor response of androgen-dependent tissues such as seminal vesicle and prostate.

Biochemical Characterization of 20α-Hydroxysteroid Dehydrogenase

  • Byambaragchaa, Munkhzaya;Min, Kwan-Sik
    • Reproductive and Developmental Biology
    • /
    • v.42 no.2
    • /
    • pp.7-12
    • /
    • 2018
  • In this review, we have tried to summarize the evidence and molecular characterization indicating that $20{\alpha}$-hydroxysteroid dehydrogenase ($20{\alpha}$-HSD) is a group of the aldo-keto reductase (AKR) family, and it plays roles in the modulation and regulation of steroid hormones. This enzyme plays a critical role in the regulation of luteal function in female mammals. We have studied the molecular expression and regulation of $20{\alpha}$-HSD in cows, pigs, deer, and monkeys. The specific antibody against bovine $20{\alpha}$-HSD was generated in a rabbit immunized with the purified recombinant protein. The mRNA expression levels increased gradually throughout the estrous cycle, the highest being in the corpus luteum (CL) 1 stage. The mRNA was also specifically detected in the placental and ovarian tissues during pregnancy. The $20{\alpha}$-HSD protein was intensively localized in the large luteal cells and placental cytotrophoblast villus, glandular epithelial cells of the endometrium, syncytiotrophoblast of the placenta, the isthmus cells of the oviduct, and the basal part of the primary chorionic villi and chorionic stem villus of the placenta and large luteal cells of the CL in many mammalian species. Further studies are needed to determine the functional significance of the $20{\alpha}$-HSD molecule during ovulation, pregnancy, and parturition. This article will review how fundamental information of these enzymes can be exploited for a better understanding of the reproductive organs during ovulation and pregnancy.

Improving behavior characteristics and stress indices of gestating sows housed with group housing facility

  • Jeong, Yongdae;Choi, Yohan;Kim, Doowan;Kim, Joeun;Min, Yejin;Jung, Hyunjung;Kim, Younghwa
    • Journal of Animal Science and Technology
    • /
    • v.62 no.6
    • /
    • pp.875-883
    • /
    • 2020
  • This study was conducted to investigate the effects of group-housing facility (GHF), compared to an individual confinement stall (CON), on the reproductive performance, behavior, and stress hormones of gestating sows. A total of 50 primiparous sows (Landrace × Yorkshire) were randomly allocated into either CON (n = 25) or GHF (n = 25) during the gestation period. One week before parturition, the sows were transferred into conventional farrowing crates, and cross-fostering was conducted within 1 d of delivery. Blood was collected for analyses of stress indices at 75 d of gestation and postpartum. Reproductive performance was estimated during the period of birth to weaning. Behavior patterns were identified at 90 d of gestation. Litter size was not different between the CON and GHF treatments. Weaning to estrus interval, however, tended to be lower in the GHF than in the CON (p < 0.1). Activity, treating, belly nosing, and exploring behaviors were observed only in the GHF group, whereas rubbing was shown only with the CON. Serum cortisol concentration was lower in the GHF than in the CON at 75 d of gestation (p < 0.05). Sows housed in the GHF showed lower epinephrine and norepinephrine concentrations than those housed in the CON at postpartum (p < 0.05). The GHF sows demonstrated more natural behavior characteristics associated with stress relief than the CON sows with no adverse effects on reproductive performance. Therefore, these results suggest that GHF could be applied as an alternative housing facility to improve animal welfare on swine farms.

Effects of Ovarian Status at the Time of Initiation of the Modified Double-Ovsynch Program on the Reproductive Performance in Dairy Cows

  • Jaekwan Jeong;Illhwa Kim
    • Journal of Veterinary Clinics
    • /
    • v.40 no.3
    • /
    • pp.238-241
    • /
    • 2023
  • This study determined the effect of ovarian status at the beginning of the modified Double-Ovsynch program on reproductive performance in dairy cows. In the study, 1,302 cows were treated with a modified Double-Ovsynch program at 56 days after calving. This program comprises administering gonadotropin-releasing hormones (GnRH), prostaglandin F (PGF) 10 days later, GnRH 3 days later, GnRH 7 days later, and GnRH 56 h later, followed by timed artificial insemination (TAI) 16 h later. At the beginning of the program, cows were categorized according to the size of the largest follicle and the presence of a corpus luteum (CL) in the ovaries as follows: 1) small follicle (<5 mm, SF group, n = 100), 2) medium follicle (8-20 mm, MF group, n = 538), and 3) large follicle (≥25 mm, LF group, n = 354) without a CL, or 4) the presence of a CL (CL group, n = 310). The pregnancies per AI after the first TAI were analyzed by logistic regression using the LOGISTIC procedure, and the logistic model included the fixed effects of the herd size, parity, body condition score (BCS) at the first TAI, TAI period, and ovarian status. A larger herd size, higher BCS at the first TAI, and TAI period with no heat stress increased (p < 0.05) the probability of pregnancy per AI after the first TAI. However, ovarian status at the beginning of the program did not affect (p > 0.05) the pregnancies per AI (ranges of 37.9% to 42.9%). These results show that the modified Double-Ovsynch program can be used effectively while maintaining good fertility regardless of the ovarian status in dairy herds.

Alteration of Gene Expressions in Human Endometrial Stromal Cells by Exogeneous FSH Treatments (난포자극호르몬이 인간의 자궁 기질세포의 유전자 발현 양상에 미치는 영향)

  • Choi, Hye-Won;Jun, Jin-Hyun;Lee, Hyoung-Song;Hong, In-Sun;Kang, Kyung-Sun;Koong, Mi-Kyoung
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.4
    • /
    • pp.217-223
    • /
    • 2004
  • Objective: To evaluate the effects of recombinant FSH (rFSH) and urinary FSH (uFSH) on the gene expressions of human endometrial stromal cells in vitro. Methods: Endometrial tissue was obtained from a pre-menopausal women undergoing hysterectomy. Primary endometrial stromal cells were isolated and in vitro cultured with FBS-free DMEM/F-12 containing 0, 10, 100, and 1, 000 mIU/ml of rFSH and uFSH for 48 hours, respectively. Total RNA was extracted from the cultured cells and subjected to real time RT-PCR for the quantitative analysis of progesterone receptor (PR), estrogen receptor $\alpha/\beta$ (ER-$\alpha/\beta$), cyclooxygenase 2 (Cox-2), leukemia inhibitory factor (LIF), homeobox A10-1 and -2 (HoxA10-1/-2). Results: Both hormone treatments slightly increased (< 3 folds) the expressions of PR, ER-$\beta$ and HoxA10-1/-2 gene. However, ER-$\alpha$ expression was increased up to five folds by treatments of both FSH for 48 hours. The LIF expression by the 10 mIU/ml of uFSH for 12 hours was significantly higher than that of rFSH (p<0.01). After 24 hours treatment of two kinds of hormones, the expression patterns of LIF were similar. The 100 and 1, 000 mIU/ml of rFSH induced significantly higher amount of Cox-2 expression than those of uFSH, respectively (p<0.05). Conclusion: This study represents no adversely effect of exogeneous gonadotropins, rFSH and uFSH, on the expression of implantation related genes. We suggest that rFSH is applicable for the assisted reproductive technology without any concern on the endometrial receptivity.