• 제목/요약/키워드: replacement of soil

검색결과 199건 처리시간 0.03초

Application of sugarcane bagasse ash in the production of low cost soil-cement brick

  • Amaral, Mateus C.;Holanda, Jose N.F.
    • Advances in environmental research
    • /
    • 제6권4호
    • /
    • pp.255-264
    • /
    • 2017
  • This work investigated the use of sugarcane bagasse ash (SCBA) generated by an energy cogeneration process in sugarcane mill as an alternative raw material in soil-cement brick. The SCBA obtained from a sugarcane mill located in southeastern Brazil was characterized with respect to its chemical composition, organic matter content, X-ray diffraction, plasticity, and pozzolonic activity. Soil-cement bricks were prepared by pressing and curing. Later, they were tested to determine technical properties (e.g., volumetric shrinkage, apparent density, water absorption, and compressive strength), present crystalline phases, and microstructural evolution. It was found that the SCBA contains appreciable amounts of silica ($SiO_2$) and organic matter. The results showed that the SCBA could be used in soil-cement bricks, in the range up to 30 wt.%, as a partial replacement for Portland cement. These results suggest that the SCBA could be valorized for manufacturing low-cost soil-cement bricks.

Utilization of ladle furnace slag from a steelwork for stabilization of soil cement

  • Ayawanna, Jiratchaya;Kingnoi, Namthip;Sukchaisit, Ochakkraphat;Chaiyaput, Salisa
    • Geomechanics and Engineering
    • /
    • 제31권2호
    • /
    • pp.149-158
    • /
    • 2022
  • Ladle furnace (LF) slag, waste from the steel-making process, was incorporated to improve the compressive strength of soil cement. LF slag was mixed to replace the cement in the soil-cement samples with wt% ratio 20:0, 15:5, and 10:10 of cement and slag, respectively. LF slag in the range of 5, 10, and 20 wt% was also separately added to the 20-wt% cement-treated soil samples. The soil-cement mixed LF slag samples were incubated in a plastic wrapping for 7, 14, and 28 days. The strength of soil cement was highly developed to be higher than the standard acceptable value (0.6 MPa) after incorporating slag into soil cement. The mixing of LF slag resulted in more hydration products for bonding soil particles, and hence improved the strength of soil cement. With the LF slag mixing either a replacement or additive materials in soil cement, the LF slag to cement ratio is considered to be less than 1, while the cement content should be more than 10 wt%. This is to promote a predominant effect of cement hydration by preventing the partially absorbed water on slag particles and keeping sufficient water content for the cement hydration in soil cement.

토양칼럼을 이용한 초기우수 중 염양염류의 수변녹지 토양에서의 제거도 평가 (Soil Column Experiment to Evaluate Removal of Nutrients in Stormwater Runoff by Soil of Riparian Protection Zone)

  • 윤석표;최지용
    • 한국물환경학회지
    • /
    • 제20권3호
    • /
    • pp.231-235
    • /
    • 2004
  • To investigate removal effects of nutrients in stormwater runoff by soil of riparian protection zone, soil column experiment was conducted for 20 months. Artificial stormwater runoff containing phosphate and nitrate was applied on the surface of soil column twice a week, and phosphate and nitrate concentrations were measured from the leached water. Soil of riparian protection zone reduced the released amount of infiltrated water to the surrounding water. After infiltration of 1m depth of soil column, average removal rates of phosphate and nitrate were 97.7 % and 74.7 %, respectively. As main mechanisms of phosphate are adsorption to soil particle and utilization by plants, periodical replacement of soil and harvesting of plant at the end of growing season are required. For the removal of nutrients in stormwater runoff by the soil layer, soil of riparian protection zone has higher hydraulic conductivity to infiltrate stormwater. Sandy soil having hydraulic conductivity of about $1{\times}10^{-2}cm/s$ range might be appropriate for this purpose.

동치환공법의 적정심도 결정에 관한 연구 (LandAnalysis of Effective Depth of Dynamic Replacement Method)

  • 김성환
    • 한국재난정보학회 논문집
    • /
    • 제14권3호
    • /
    • pp.305-314
    • /
    • 2018
  • 연구목적: 동치환공법은 유사한 동다짐공법에 비해 동치환 직경, 심도, 간격, 타격에너지(중추 무게와 낙하고), 지반강도 증대 효과, 지반 개량효율 등에 대한 연구 및 실증이 부족하다. 연구방법: 본 연구에서는 실트질 점토지반을 연구 대상 지반으로 선정하여 예비 동치환시공과 본시공 동치환의 2가지 경우로 나눠서 지반개량을 실시하고 효과를 분석하였으며, 결과를 바탕으로 적정 개량심도 결정 및 개량효과에 미치는 인자에 관하여 연구하였다. 연구결과: 실트질 점토 지반을 대상으로 동치환 적정 심도 결정, 지반개량효과에 끼치는 특성을 상세히 분석하여 동치환 시 적용할 수 있는 개량심도 ($D_R$) 관계식을 제안하였다. 결론: 동치환공법을 실트질 점토 지반에 적용한 경우, 동다짐공법의 낙하에너지보다 1.25~2.5배 증가시켜야 하는 것으로 나타났다.

해상 연약지반의 저치환율 개량에 대한 확률론적 최적화 (Probabilistic Optimization for Improving Soft Marine Ground using a Low Replacement Ratio)

  • 한상현;김홍연;여규권
    • 지질공학
    • /
    • 제26권4호
    • /
    • pp.485-495
    • /
    • 2016
  • 본 연구에서는 방파제 하부지반을 저치환율 재료로 보강 및 개량하기 위한 치환율과 재하중 방치기간을 확률론적 최적화 기법을 이용하여 분석하였다. 해석에 필요한 확률변수의 불확실성을 최소화하기 위하여 사전자료를 활용한 베이지안 갱신결과 최대 39.8% 포인트까지 불확실성이 감소하였고, 특히 사전함수의 표본수가 더 많은 구간의 감소폭이 컸다. 치환율 결정을 위하여 저치환율 단면 중 15~40% 범위에서 일계신뢰도법 및 몬테카를로 시뮬레이션 방법에 의해 해석한 결과 목표파괴확률을 만족하는 치환율은 심층고결처리 및 쇄석다짐말뚝 구간에서 각각 20% 및 25% 이상으로 나타났다. 치환율에 대한 최적화를 위하여 생애주기비용 분석을 실시한 결과 목표파괴확률을 만족하는 범위 내에서 최적 치환율이 산정되었으며, 두 구간에서 각각 20% 및 30%가 가장 경제적인 것으로 결정되었다. 재하중의 방치기간에 대한 확률론적 해석결과 3개월 이상인 경우 모두 목표파괴확률을 만족하는 것으로 나타났다.

진동치환 스톤칼럼공법에 의한 액상화 저감 효과 (Reduction Effect of liquefaction by Vibro-Replacement Stone Columns)

  • 이송;채점식;박상국
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 춘계학술대회 논문집
    • /
    • pp.443-450
    • /
    • 2001
  • This paper shows the reduction effect of tile earthquake-induced liquefaction potential of soils that improved by Vibro-Replacement Stone Columns. The Vibro-Replacement Stone Columns method transforms soft cohesive soils into a composite mass of compacted granular or crushed stone columns by using vibrating equipment and water jets. This study investigated and analyzed the behavior of the stone columns and composite ground using the results of in situ test and measurement at the job-site. This paper shows the evaluation of the earthquake-induced liquefaction potential of soils using in situ test. There are different types of in situ test used in the evaluation the liquefaction potential. In the particular study the Standard penetration test, and Cone penetration test were used. The N value of Standard Penetration test has been used all over for a very long time. The evaluation of the liquefaction of soil was performed using the worldwide renewed Cone penetration test

  • PDF

Effect of slag on stabilization of sewage sludge and organic soil

  • Kaya, Zulkuf
    • Geomechanics and Engineering
    • /
    • 제10권5호
    • /
    • pp.689-707
    • /
    • 2016
  • Soil stabilization is one of the useful method of ground improvement for soil with low bearing capacity and high settlement and unrequired swelling potential. Generally, the stabilization is carried out by adding some solid materials. The main objective of this research was to investigate the feasibility of stabilization of organic soils and sewage sludge to obtain low cost alternative embankment material by the addition of two different slags. Slags were used as a replacement for weak soil at ratios of 0%, 25%, 50%, 75% and 100%, where sewage sludge and organic soil were blended with slags separately. The maximum dry unit weights and the optimum water contents for all soil mixtures were determined. In order to investigate the influence of the slags on the strength of sewage sludge and organic soil, and to obtain the optimal mix design; compaction tests, the California bearing ratio (CBR) test, unconfined compressive strength (UCS) test, hydraulic conductivity test (HCT) and pH tests were carried out on slag-soil specimens. Unconfined compressive tests were performed on non-cured samples and those cured at 7 days. The test results obtained from untreated specimens were compared to tests results obtained from soil samples treated with slag. Laboratory tests results indicated that blending slags with organic soil or sewage sludge improved the engineering properties of organic or sewage sludge. Therefore, it is concluded that slag can be potentially used as a stabilizer to improve the properties of organic soils and sewage sludge.

쇄석말뚝의 지지력 특성에 관한 모형시험 연구 (A Model Test Study on the Bearing Capacity of the Crushed Stone Pile)

  • 이상익;박용원;김병일;윤길림
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.299-306
    • /
    • 2001
  • Crushed Stone Pile(CSP) is one of the ground improvement methods available to loose sand and clayey ground by forming compacted CSP in the weak soil layer. The effects of this method are enhancement of ground bearing capacity, reduction of settlement and prevention of lateral ground movement in cohesive layer, reduction of liquefaction potential in sandy ground. This study performs model tests in 1.0m${\times}$1.0m${\times}$1.0m and 1.5m${\times}$1.5m${\times}$l.2m model tank to observe bearing capacity of CSP treated ground. The area replacement ratio of CSP composite ground varies 20%, 30% and 40% with square grid pattern. After the composite ground was consolidated under pressure of 0.5kg/$\textrm{cm}^2$ and 1.0kg/$\textrm{cm}^2$, load tests were carried out. The results show that ultimate bearing capacity increases with area replacement ratio and the preconsolidation pressure of ground.

  • PDF

Development of Lighting Compressed by Injection Yellow Ocher Soil

  • Kwak, Woo-Seob
    • 한국가구학회지
    • /
    • 제19권6호
    • /
    • pp.452-459
    • /
    • 2008
  • The compressed injection yellow ocher soil is the process-technology by drying the product through sunshine, not by firing like pottery and ceramic ware. It is the technology of development being able to achieve the far infrared ray and humidity adjustment by adding recycling paper, Korean paper and bamboo salt, and it corresponds with the construction enforcement ordinance 2007 as an interior-finishing product which is fire-resistant. In case that the yellow ocher soil would be used as lighting device and interior-finishing material and decoration, it could contribute to an improvement of National Health by avoiding the sick house syndrome and adding humidity adjustment, and it has more efficient economic effect due to using recycle-available additives. Through such developments of the yellow ocher soil products the domestic market of lighting device and construction material can be advanced and the replacement effect of imported goods & also export effect can be expected accordingly.

  • PDF

토양의 총 경제적 가치 (The Total Economic Value of Soil in Korea)

  • 박소연;유승훈
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권6호
    • /
    • pp.156-168
    • /
    • 2016
  • The Korean government is planning to invest a lot of funds for conservation of the soil. Accordingly, it needs quantitative information on the soil. This paper attempts to analyze the total value of soil quantitatively: the total economic value of soil can be divided into use value and non-use value. To this end, we apply a replacement cost method (RCM) and contingent valuation method (CVM). Especially, CVM is most widely used to measure the non-use value such as environment goods. We employed the one-and-one-half-bounded dichotomous choice (OOHBDC) for willingness to pay (WTP) elicitation and a spike model. The monthly mean WTP was estimated to be KRW 3,949 per household for the next 10 years, which is statistically significant at the 1% level. Expanding the value to the relevant population gives us KRW 897.9 billion per year and as of the end of 2015, the non-use value of soil was assessed to be KRW 838.6 billion. Meanwhile, use value is subdivided into direct use value and indirect use value. This value was calculated KRW 3,277 trillion and KRW 51.8 trillion, respectively. As a result, total economic value of soil is estimated to be KRW 3,330 trillion in Korea.