• Title/Summary/Keyword: repair grouting

Search Result 22, Processing Time 0.022 seconds

Effect analysis by time passage after Repair & Reinforcement of Fill Dams (필댐 보수보강후 시간경과에 따른 효과 분석)

  • Kim, Jae-Hong;Oh, Byung-Hyun;Im, En-sang;Hong, Won-Pho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.697-703
    • /
    • 2008
  • Excessive water leakage phenomenon happens through damage of nation core zone of about 17,000 storage of water facilities or collapse of dam is worried, is being damaged or enforce dilapidated fill dam core zone's repair reinforcement. Example that use grouting method of construction considering construction and economic performance etc. recently by repair reinforcement way about defect of dam is increased. Permeation grouting method repair & reinforcement of fill dam countermeasure is preferred in nation. Do that is economical to decide these repair reinforcement effect and grouting effect estimation method that do not give damage to dam is effective. Therefore, observing electricity resistivity Survey change of dam since grouting reinforcement using Electric resistivity Survey inquiry of seismic survey method in this research, Wished to verify grouting effect whether is possible as Electric resistivity Survey, and study whether integrity of dam through repair reinforcement defined.

  • PDF

Determination of the repair grout volume to fill voids in external post-tensioned tendons

  • Im, Seok Been;Hurlebaus, Stefan
    • Structural Engineering and Mechanics
    • /
    • v.42 no.1
    • /
    • pp.25-38
    • /
    • 2012
  • Recently, investigated failures of external post-tensioned (PT) tendons have called attention to the corrosion of strands in PT bridges, and the prevention of ongoing corrosion is required to secure their structural integrity. Since voids inside ducts can be a source for the ingress of water or deleterious chemicals, the vacuum grouting (VG) method and a volumeter for estimating amount of repair grouts were employed to fill voided ducts. However, the VG method is expensive and time-consuming for infield application because it requires an air-tight condition of entire ducts. Thus, latest research assessed three different repair grouting methods, and the pressure vacuum grouting (PVG) method was recommended in the field because it showed good filling capability in voided ducts and did not require an air-tight condition. Thus, a new method is required to estimate the volume of repair grouts because the PVG method is not applied in air-tight ducts. This research assesses the relationship between voided areas on ducts identified with soundings and required grout volume for repair using experimental results. The results show that the proposed equations and assumptions for estimating repair grout volume provide a sufficient amount of repair grouts for filling voided ducts.

Permeation Grouting Effect for Repair and Reinforcement of Old Dam (노후댐 보수보강을 위한 침투그라우팅 효과 분석)

  • LEE, Dong-Beom;Lim, Heui-Dae;Song, Young-Su
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.277-295
    • /
    • 2018
  • As it has become difficult to secure new water resources through dam construction due to the critical social public opinions on dam construction from 10 years ago, it is necessary to review the existing water resources through the review of existing dams. Accordingly, access methods, such as planning, construction and management, were carried out using technologies already accumulated in relation to the repair and reinforcement of the dam. As a result of the repair and reinforcement, permeation grouting has been performed in many dams, but the establishment of the technology is insufficient so far, and the published paper at home and abroad is extremely rare. In this thesis, low-pressure penetration and grouting reinforcement technologies for the YC dam are analyzed in detail. As a result, penetration grouting has shown that it can be effectively applied to the improvement in the constallability of the core fill-like a YC dam. In addition, the technical details of the experience-proven penetration grouting are given in relation to the injection criteria. It is deemed that the specific analysis data of the Fill Dam penetration grouting technology through this study can be used as useful data for strengthening the repair of Fill Dam and reservoir.

A Study on Basic Properties of Grouting Motars for polymer-Modified preplaced Aggregate Concrete (프리팩트 폴리머 시멘트 콘크리트용 주입 폴리머 시멘트 모르터의 성질에 관한 연구)

  • 이철웅;김완기;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.350-355
    • /
    • 1998
  • Preplaced aggregate concrete in the building fields has recently been used in the partial repair works for damaged reinforced concrete structures, and polymer-modified mortars have been employed as grouting mortars for the preplaced aggregate concrete. The objective of this study is to clear the properties of polymer-modified grouting mortars. Polymer-modified mortars using a polystyrene acrylic(St/Ac) emulsion as grouting mortars for preplaced aggregate concrete are prepared with various mix proportions, and tested for flexural and compressive strengths, adhesion in tension. The flexural strength of emulsion-modified grouting mortars does not give much variation with increasing fly ash replacement for cement and sand-binder ratio. With increasing polymer-binder ratio, the flexural strength and adhesion in tension of St/Ac emulsion-modified grouting mortars increases, become nearly constant or reaches a maximum at a polymer-binder ratio of 5%. From the test results, St/Ac emulsion-modified grouting mortar with a polymer-binder ratio of 5%, a fly ash replacement of 10% for cement and sand-binder ratio of 1.0 is recommended as a grouting mortar for preplaced aggregate concrete.

  • PDF

Mechanical Behavior of Construction Joints in Reinforced Concrete Structures Filled Internally with Cement Pastes (내부그라우팅으로 미세균열이 보수된 철근콘크리트 시공이음부의 역학적 특성에 관한 연구)

  • Oh, Byung-Hwan;Kim, Se-Hoon;Lee, Keun-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.217-225
    • /
    • 2003
  • Grouting internally with grout materials can repair the micro-cracks and micro-voids of construction joints more efficiently than injecting grouts from the surface of cracks. A new internal grouting method using perforated bundled-cables was developed in this study to enhance the structural integrity of the construction joints. The extensive experiments were performed to examine the mechanical behavior of construction joints which are repaired internally by the developed method. The tests were conducted for rectangular-shaped box wall structures and straight wall structures. The strength and permeability tests at grouted construction joints were conducted to evaluate the structural behavior of repaired construction joints. The present study indicates that the internal grouting method developed in this study enhances greatly the performance of construction joints and may be efficiently used for the leak-tight integrity of construction joints in concrete structures.

Comparative study on dynamic properties of argillaceous siltstone and its grouting-reinforced body

  • Huang, Ming;Xu, Chao-Shui;Zhan, Jin-Wu;Wang, Jun-Bao
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.333-352
    • /
    • 2017
  • A comparison study is made between the dynamic properties of an argillaceous siltstone and its grouting-reinforced body. The purpose is to investigate how grout injection can help repair broken soft rocks. A slightly weathered argillaceous siltstone is selected, and part of the siltstone is mechanically crushed and cemented with Portland cement to simulate the grouting-reinforced body. Core specimens with the size of $50mm{\times}38mm$ are prepared from the original rock and the grouting-reinforced body. Impact tests on these samples are then carried out using a Split Hopkinson Pressure Bar (SHPB) apparatus. Failure patterns are analyzed and geotechnical parameters of the specimens are estimated. Based on the experimental results, for the grouting-reinforced body, its shock resistance is poorer than that of the original rock, and most cracks happen in the cementation boundaries between the cement mortar and the original rock particles. It was observed that the grouting-reinforced body ends up with more fragmented residues, most of them have larger fractal dimensions, and its dynamic strength is generally lower. The mass ratio of broken rocks to cement has a significant effect on its dynamic properties and there is an optimal ratio that the maximum dynamic peak strength can be achieved. The dynamic strain-softening behavior of the grouting-reinforced body is more significant compared with that of the original rock. Both the time dependent damage model and the modified overstress damage model are equally applicable to the original rock, but the former performs much better compared with the latter for the grouting-reinforced body. In addition, it was also shown that water content and impact velocity both have significant effect on dynamic properties of the original rock and its grouting-reinforced body. Higher water content leads to more small broken rock pieces, larger fractal dimensions, lower dynamic peak strength and smaller elastic modulus. However, the water content plays a minor role in fractal dimensions when the impact velocity is beyond a certain value. Higher impact loading rate leads to higher degree of fragmentation and larger fractal dimensions both in argillaceous siltstone and its grouting-reinforced body. These results provide a sound basis for the quantitative evaluation on how cement grouting can contribute to the repair of broken soft rocks.

A Study on the Ground Improvement by Compaction Grouting System (C.G.S에 의한 기초지반보강효과에 관한 연구)

  • 천병식;여유현;최현석;오일석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.02a
    • /
    • pp.1-13
    • /
    • 1999
  • The use of Compaction Grouting evolved in the 1950's to correct structural settlement of buildings. Over the almost 50 years, the technology has developed and is currently used in wide range of applications. Compaction Grouting, the injection of a very stiff, 'zero-slump' mortar grout under relatively high pressure, displaces and compacts soils. It can effectively repair natural or man-made soil strength deficiencies in variety of soil formations. Major uses of Compaction Grouting include densifying loose soils or fill voids caused by sinkholes, poorly compacted fills, broken utilities, improper dewatering, or soft ground tunneling excavation. Other application include preventing liquefaction, re-leveling settled structures, and using compaction grout bulbs as structural elements of minipiles or underpinning. The technique replaced slurry injection, or 'pressure grouting', as the preferred method of densification grouting. There are several reasons for the increased use of Compaction Grouting which can be summarized in one word: CONTROL. The low slump grout and injection processes are usually designed to keep the grout in a homogeneous mass at the point of injection, while acceptable in some limited applications, tends to quickly get out of control. Hydraulic soil fracturing can cause extensive grout travel, often well beyond the desired treatment zone. So, on the basis of the two case history constructed in recent year, a study has been peformed to analyze the basic mechanism of the Compaction Grouting and verify the effectiveness of the ground improvement using some test methods.

  • PDF

A Study on the Ground Improvement by Compaction Grouting System (CGS에 의한 기초지반보강에 관한 연구)

  • 천병식;권형석
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.4
    • /
    • pp.9-19
    • /
    • 1999
  • The use of compaction grouting evolved in 1950's to correct structural settlement of buildings. Over the almost 50 years, the technology has been developed and is currently used in wide range of applications. Compaction grouting, the injection of a very stiff, 'zero-slump' mortar grout under relatively high pressure, displaces and compacts soils. It can effectively repair natural or man-made soil strength deficiencies in variety of soil formations. Major applications of compaction grouting include densifying loose soils or fill voids caused by sinkholes, poorly compacted fills, broken utilities, improper dewatering, or soft ground tunneling excavation. Other applications include preventing liquefaction, re-leveling settled structures, and using compaction grout bulbs as structural elements of minipiles or underpinning. In this paper, on the basis of the case history constructed in this year, a study has been performed to analyze the basic mechanism of the compaction grouting. Also, the effectiveness of the ground improvement and the bearing capacity of the compaction pile has been verified by the Cone Penetration Test(CPT) and Load Test. Relatively uniform compaction grouting column could be maintained by planning the quality control in the course of grouting. And, the Qualify Control Plan has been conceived using grout pressure, volume of grout and drilling depth.

  • PDF

Reinforcement of the Foundation using C,G.S (C.G.S공법에 의한 기초지반 보강)

  • 천병식;권형석;정의원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.441-448
    • /
    • 2000
  • While the Grouting has been used to reinforce the foundation of structures in wide range of application, there need complementary measures against problems such as pollution, durability, influence on the adjacent structures. Compaction Grouting, the injection of a very stiff, 'zero-slump' mortar grout under relatively high pressure, displaces and compacts soils. It can effectively repair natural or man-made soil strength deficiencies in variety of soil formations. In this paper, on the basis of the case history constructed in this year, a study has been performed to analyze the basic mechanism of the Compaction Grouting, Also, the effectiveness of the ground improvement and the bearing capacity of the Compaction Pile has been verified by the S.P.T and core strength.

  • PDF

A Study on the Ground Improvement by Compaction Grouting System (C.G.S에 의한 기초지반보강효과에 관한 연구)

  • 천병식;여유현;최현석;오일석
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.375-382
    • /
    • 1999
  • The use of compaction grouting system(C.G.S) evolved in the 1950's to correct structural settlement of buildings. Over the almost 50 years, the technology has developed and is currently used in wide range of applications. Compaction Grouting, the injection of a very stiff 'zero-slump' mortar grout under relatively high pressure, displaces and compacts soils. It can effectively repair natural or man-made soil strength deficiencies in variety of soil formations. Major uses of Compaction Grouting include densifying loose soils or fill voids caused by sinkholes, poorly compacted fills, broken utilities, improper dewatering, or soft ground tunneling excavation. Other application include preventing liquefaction, re-leveling settled structures, and using compaction grout bulbs as structural elements of minipiles or underpinning. So, on the basis of the case history constructed in recent year, a study has been performed to analyze the basic mechanism of the Compaction Grouting and verify the effectiveness of the ground improvement.

  • PDF