• 제목/요약/키워드: repair and maintenance cost

검색결과 325건 처리시간 0.03초

Case Study of Non-Metallic Repair Systems for Metallic Piping

  • Hammad, Bakr. S.
    • Corrosion Science and Technology
    • /
    • 제7권1호
    • /
    • pp.6-12
    • /
    • 2008
  • Non-metallic composite overwrap repair methods utilize resin based fiber-reinforced composite materials, which have higher specific strength to weight ratio and stiffness, superior corrosion and fatigue resistance, and substantially reduced weight when compared to carbon steel. Non-metallic repair methods/systems can allow desired functional properties to be achieved at a respectable economic advantage. For example, non-metallic composite repair systems have at least a 50 year design stress of 20 ksi and approximately 25% of the short term tensile strength of fiberglass. For these systems, the contribution of the repaired steel to the load carrying capability need not be considered, as the strength of the repair itself is sufficient to carry the internal pressure. Worldwide experience in the Oil & Gas industry confirms the integrity, durability, inherent permanency, and cost-effectiveness of non-metallic composite repair or rehabilitation systems. A case study of a recent application of a composite repair system in Saudi Aramco resulted in savings of 37% for offshore subsea line and 75% for onshore above grade pipeline job. Maintaining a pipeline can be costly but it is very small in comparison to the cost of a failure. Pipeline proponents must balance maintenance costs with pipeline integrity. The purpose is not just to save money but also to attain a level of safety that is acceptable. This technology involves the use of an epoxy polymer resin based, fiber-reinforced composite sleeve system for rehabilitation and /or repair pipelines.

일반화된 모델에 대한 최적 교체정책에 관한 연구 (On Optimal Replacement Policy for a Generalized Model)

  • Ji Hwan Cha
    • 품질경영학회지
    • /
    • 제31권3호
    • /
    • pp.185-192
    • /
    • 2003
  • In this paper, the properties on the optimal replacement policies for the general failure model are developed. In the general failure model, two types of system failures may occur : one is Type I failure (minor failure) which can be removed by a minimal repair and the other, Type II failure (catastrophic failure) which can be removed only by complete repair. It is assumed that, when the unit fails, Type I failure occurs with probability 1-p and Type II failure occurs with probability p, $0\leqp\leq1$. Under the model, the system is minimally repaired for each Type I failure, and it is repaired completely at the time of the Type II failure or at its age T, whichever occurs first. We further assume that the repair times are non-negligible. It is assumed that the minimal repair times in a renewal cycle consist of a strictly increasing geometric process. Under this model, we study the properties on the optimal replacement policy minimizing the long-run average cost per unit time.

강재 교량의 노후화에 따른 확률적 보수.보강 주기 추정에 관한 연구 (A Study on the Estimation of Probabilistic Repair.Reinforcement Cycles from Rating Curve of Steel Girder Bridges)

  • 김현배;김용수
    • 한국건설관리학회논문집
    • /
    • 제10권2호
    • /
    • pp.102-110
    • /
    • 2009
  • 교량구조물의 유지관리비용은 크게 증가하는 추세이며 이에 대한 교량의 점검은 많은 비용뿐만 아니라 시간과 노력이 소요된다. 따라서 사전에 교량의 보수 또는 보강이 필요한 시점을 파악하고 그 주기를 예측하는 것은 비용의 절감뿐만 아니라 교량 구조물에 대한 안전성을 확보하는데 크게 도움이 된다. 따라서 본 연구에서는 강박스 도로교량에 대한 신뢰성 있는 보수 또는 보강 주기를 추정하기 위하여 노후화에 따른 기존의 성능등급 곡선을 우선적으로 분석하였다. 이를 바탕으로 보수보강 확률함수를 정의하고 컴퓨터 시뮬레이션을 통하여 확률적으로 보수보강 주기를 추정하는 독자적인 방법을 정립하여 제시 하였다. 또한 결과에 대한 통계적 분석을 통하여 신뢰성을 검증하였으며 강박스 도로교량에 대한 통계자료에서 얻어진 보수 또는 보강 주기와 그 결과가 유사하였다. 본 연구에서 얻어진 결과는 강재 교량 구조물에 대한 신뢰성 있는 보수 또는 보강 주기를 예측하는데 크게 기여할 것으로 판단된다.

입환기관차의 LCC 평가분석 (Life-Cost-Cycle Evaluation Analysis of the Shunting Locomotive)

  • 배대성;정종덕
    • 한국철도학회논문집
    • /
    • 제8권3호
    • /
    • pp.260-266
    • /
    • 2005
  • The deterioration of a shunting locomotive was characterized for the lifetime assessment. The locomotive has been used for shunting works in steel making processes, and in this investigation, various types of technical evaluation methods for the locomotive parts were employed to assess the current deterioration status and to provide important clue for lifetime prediction. Unlike other rolling stocks in railway applications, the diesel shunting locomotive is composed of major components such as diesel engine, transmission, gear box, brake system, electronic devices, etc., which cover more than 70 percent of the total price of the locomotive. Therefore, in this paper, each part of major components in the diesel locomotive was analyzed in terms of the degree of deterioration. The lift-cycle-cost (LCC) analysis was performed based on the maintenance and repair history as compared with economical cost to provide the cost-effective prediction, i.e., to assess either repair for reuse or putting the locomotive out of service based on cost-effective calculation.

On determining a non-periodic preventive maintenance schedule using the failure rate threshold for a repairable system

  • Lee, Juhyun;Park, Jihyun;Ahn, Suneung
    • Smart Structures and Systems
    • /
    • 제22권2호
    • /
    • pp.151-159
    • /
    • 2018
  • Maintenance activities are regarded as a key part of the repairable deteriorating system because they maintain the equipment in good condition. In practice, many maintenance policies are used in engineering fields to reduce unexpected failures and slow down the deterioration of the system. However, in traditional maintenance policies, maintenance activities have often been assumed to be performed at the same time interval, which may result in higher operational costs and more system failures. Thus, this study presents two non-periodic preventive maintenance (PM) policies for repairable deteriorating systems, employing the failure rate of the system as a conditional variable. In the proposed PM models, the failure rate of the system was restored via the failure rate reduction factors after imperfect PM activities. Operational costs were also considered, which increased along with the operating time of the system and the frequency of PM activities to reflect the deterioration process of the system. A numerical example was provided to illustrate the proposed PM policy. The results showed that PM activities performed at a low failure rate threshold slowed down the degradation of the system and thus extended the system lifetime. Moreover, when the operational cost was considered in the proposed maintenance scheme, the system replacement was more cost-effective than frequent PM activities in the severely degraded system.

인공지능 기반의 교량 보수공법 선정 기술 개발을 위한 선행 분석 (Preliminary Analysis on Artificial Intelligence-based Methodology for Selecting Repair and Rehabilitation Methods of Bridges)

  • 김종협;정인수;윤원건;김정렬;박인석
    • 한국산업융합학회 논문집
    • /
    • 제24권6_2호
    • /
    • pp.861-872
    • /
    • 2021
  • An efficient cost management is important for the domestic social overhead capital(SOC) based on a long lifecycle after 30 years since completion. Maintenance in South Korea have had the restrictions of consistency and suitability of decision-making by the establishment of a budget plan based on the company estimate and repair and reinforcement methods determined by the inspection and diagnosis engineers' subjective determination for each facility. To resolve this issue, the Korea Institute of Civil Engineering and Building Technology is currently in development of a methodology to propose an optimum maintenance method according to the damage of components by artificial intelligence. This study has deduced the primary factors by analyzing information generated during bridge maintenance and management as a prior step for the development of technologies, and conducted a preliminary analysis to select the optimum artificial intelligence technology.

최소수리 블록교체 모형을 활용한 상태기반 보전 정책 연구 (A Study on Condition-based Maintenance Policy using Minimum-Repair Block Replacement)

  • 임준형;원동연;심현수;박철홍;고관주;강준규;김용수
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제18권2호
    • /
    • pp.114-121
    • /
    • 2018
  • Purpose: This study proposes a process for evaluating the preventive maintenance policy for a system with degradation characteristics and for calculating the appropriate preventive maintenance cycle using time- and condition-based maintenance. Methods: First, the collected data is divided into the maintenance history lifetime and degradation lifetime, and analysis datasets are extracted through preprocessing. Particle filter algorithm is used to estimate the degradation lifetime from analysis datasets and prior information is obtained using LSE. The suitability and cost of the existing preventive maintenance policy are each evaluated based on the degradation lifetime and by using a minimum repair block replacement model of time-based maintenance. Results: The process is applied to the degradation of the reverse osmosis (RO) membrane in a seawater reverse osmosis (SWRO) plant to evaluate the existing preventive maintenance policy. Conclusion: This method can be used for facilities or systems that undergo degradation, which can be evaluated in terms of cost and time. The method is expected to be used in decision-making for devising the optimal preventive maintenance policy.

교육시설 내용년한 산정 연구 - 옥상방수와 바닥마감재를 대상으로 - (Establishment of the Service Life of the Education Fcilities - Focused on the Roof water-proof and Floor finishings -)

  • 이강희;채창우
    • 교육시설 논문지
    • /
    • 제24권6호
    • /
    • pp.27-36
    • /
    • 2017
  • Educational facilities have an affect to make a decently learning environment. After constructed, it needs a maintenance plan to keep the performance or function which provide the repair time, repair scope and ratio. But the fundamental data are so insufficient that the field worker can't provide the maintenance plan and has no choice use the other data which concerned with apartment or office building. Above all, the service life is indispensible to make a repair plan because the repair time and scope would be provided within the service life. This study aimed at providing the method to make a service life of component in educational facilities and applying the method into the roof proof and floor finishing. Results are shown that first, it is important to set the $1^{st}$ repair time after constructed. when it proposes the three ways with the probability approach, choice probability model and cumulative cost function. Second, the service life of roof proof is provided with about 35 years. In addition, the service life of the floor finishing is about 40 years. These result would be utilized to conduct the repair plan under the service life.

AMSAA Model을 이용한 최적 LCC에 관한 연구 (A Study on the Optimal LCC using AMSAA Model)

  • 김준홍
    • 산업경영시스템학회지
    • /
    • 제29권3호
    • /
    • pp.135-142
    • /
    • 2006
  • Engineers are always concerned with life cycle costs for making important economic decisions through engineering action like reliability of products. Decisions during the reliability growth development of products involve trade-offs between invested costs and its returns. In order to find minimal LCC containing the reliability improvement cost, production cost, repair and replacement costs, and holding cost of spare parts for failure items we suggest in this paper relationship between development cost and sustaining cost in values of growth parameter $\beta$ of AMSAA model. This model is applied to the reliability growth program based on AMSAA model during R&D phase, the warranty activities of items and the block replacement policy for maintenance of items in avionic equipment.

철도차량용 냉방기의 차종별 운용현황고찰과 효율적인 유지보수방안 연구 (A study on the present operation status and the efficient maintenance program of the air-conditioners in each train model)

  • 황명연;신명호
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2008년도 춘계학술대회 논문집
    • /
    • pp.426-430
    • /
    • 2008
  • 철도차량용 냉방기는 각 차종별로 기능은 대동소이하나 용량과 부품이 상이하고 제작년도별로 부품 제작사 등이 서로 달라 호환성이 적어 유지보수에 애로가 많고 검수시간과 과다소요 등 비용이 과다 지출되고 있는 실정이다. 이에 고장처치를 위해 냉방기를 차종별로 일목요연하게 정리하고 형식 규격 용량 등을 파악, 그 현황을 도시하여 가동현황과 검수공정 등을 고찰하며 체계적이고 효율적인 유지보수 방안을 도출하고 응급복구에 대응할 수 있는 고장 처치 요령을 제시함으로써 검수 질 향상을 통해 냉방기의 수명을 연장시키고 궁극적으로 여객수입증대를 기함과 동시에 고객서비스를 향상시키고자 한다.

  • PDF