• Title/Summary/Keyword: renormalization group

Search Result 21, Processing Time 0.021 seconds

Global Bifurcations and Chaos Via Breaking of KAM Tori of an Harmonically Excited Imperfect Circular Plate

  • Samoylenko, S.B.;Lee, W.K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.419-422
    • /
    • 2005
  • Global bifurcations and chaos in modal interactions of an imperfect circular plate with one-to-one internal resonance are investigated. The case of primary resonance, in which an excitation frequency is near natural frequencies, is considered. The damping force is not included in the analysis. The renormalization-group technique for KAM tori is used to obtain the criteria for large-scale stochasticity in the system.

  • PDF

A GENERAL RICCI FLOW SYSTEM

  • Wu, Jia-Yong
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.253-292
    • /
    • 2018
  • In this paper, we introduce a general Ricci flow system, which is closely linked with the Ricci flow and the renormalization group flow, etc. We prove the short-time existence, the entropy functionals, the higher derivatives estimates and the compactness theorem for this general Ricci flow system on closed Riemannian manifolds. These basic results are useful tools to understand the singularities of this system.

Decoupling of Background and Resonance Scatterings in Multichannel Quantum Defect Theory and Extraction of Dynamic Parameters from Lu-Fano Plot

  • Lee, Chun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.891-896
    • /
    • 2009
  • Giusti-Suzor and Fano introduced translations of the scales of Lu-Fano plots by phase renormalization in order to decouple the intra- and inter-channel couplings in multichannel quantum defect theory (MQDT). Their theory was further developed by others to deal with systems involving a larger number of channels. In different directions, MQDT was reformulated into forms with a one-to-one correspondence to those in Fano's configuration mixing theory of resonance for photofragmentation processes involving one closed and many open channels. In this study, the theory was further developed to fully reveal the coupling nature, decoupling of the background and resonance scattering in physical scattering matrices as well as to further extract the dynamic parameters undiscovered by Fano and his colleagues. This theory was applied to the photoabsorption spectrum of $H_2$ observed by Herzberg's group.

Modeling flow and scalar dispersion around Cheomseongdae

  • Kim, Jae-Jin;Song, Hyo-Jong;Baik, Jong-Jin
    • Wind and Structures
    • /
    • v.9 no.4
    • /
    • pp.315-330
    • /
    • 2006
  • Flow and scalar dispersion around Cheomseongdae are numerically investigated using a three-dimensional computational fluid dynamics (CFD) model with the renormalization group (RNG) $k-{\varepsilon}$ turbulence closure scheme. Cheomseongdae is an ancient astronomical observatory in Gyeongju, Korea, and is chosen as a model obstacle because of its unique shape, that is, a cylinder-shaped architectural structure with its radius varying with height. An interesting feature found is a mid-height saddle point behind Cheomseongdae. Different obstacle shapes and corresponding flow convergences help to explain the presence of the saddle point. The predicted size of recirculation zone formed behind Cheomseongdae increases with increasing ambient wind speed and decreases with increasing ambient turbulence intensity. The relative roles of inertial and eddy forces in producing cavity flow zones around an obstacle are conceptually presented. An increase in inertial force promotes flow separation. Consequently, cavity flow zones around the obstacle expand and flow reattachment occurs farther downwind. An increase in eddy force weakens flow separation by mixing momentum there. This results in the contraction of cavity flow zones and flow reattachment occurs less far downwind. An increase in ambient wind speed lowers predicted scalar concentration. An increase in ambient turbulence intensity lowers predicted maximum scalar concentration and acts to distribute scalars evenly.

Renormalization of Thalamic Sub-Regional Functional Connectivity Contributes to Improvement of Cognitive Function after Liver Transplantation in Cirrhotic Patients with Overt Hepatic Encephalopathy

  • Yue Cheng;Jing-Li Li;Jia-Min Zhou;Gao-Yan Zhang;Wen Shen;Xiao-Dong Zhang
    • Korean Journal of Radiology
    • /
    • v.22 no.12
    • /
    • pp.2052-2061
    • /
    • 2021
  • Objective: The role of preoperative overt hepatic encephalopathy (OHE) in the neurophysiological mechanism of cognitive improvement after liver transplantation (LT) remains elusive. This study aimed to explore changes in sub-regional thalamic functional connectivity (FC) after LT and their relationship with neuropsychological improvement using resting-state functional MRI (rs-fMRI) data in cirrhotic patients with and without a history of OHE. Materials and Methods: A total of 51 cirrhotic patients, divided into the OHE group (n = 21) and no-OHE group (n = 30), and 30 healthy controls were enrolled in this prospective study. Each patient underwent rs-fMRI before and 1 month after LT. Using 16 bilateral thalamic subregions as seeds, we conducted a seed-to-voxel FC analysis to compare the thalamic FC alterations before and after LT between the OHE and no-OHE groups, as well as differences in FC between the two groups of cirrhotic patients and the control group. Correction for multiple comparisons was conducted using the false discovery rate (p < 0.05). Results: We found abnormally increased FC between the thalamic sub-region and prefrontal cortex, as well as an abnormally decreased FC between the bilateral thalamus in both OHE and no-OHE cirrhotic patients before LT, which returned to normal levels after LT. Compared with the no-OHE group, the OHE group exhibited more extensive abnormalities prior to LT, and the increased FC between the right thalamic subregions and right inferior parietal lobe was markedly reduced to normal levels after LT. Conclusion: The renormalization of FC in the cortico-thalamic loop might be a neuro-substrate for the recovery of cognitive function after LT in cirrhotic patients. In addition, hyperconnectivity between thalamic subregions and the inferior parietal lobe might be an important feature of OHE. Changes in FC in the thalamus might be used as potential biomarkers for recovery of cognitive function after LT in cirrhotic patients.

The Critical Phenomena of a Model for the Metabolic Control System with Positive Feedback

  • Kim, Cheol-Ju;Lee, Dong- J.;Shin, Kook-Joe;Lee, Jong-Myung;Ko, Seuk-Beum;Jeon, Il-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.5
    • /
    • pp.452-458
    • /
    • 1989
  • The static and dynamic phenomena of a model for the metabolic control system with positive feedback are discussed with the static and dynamic renormalization group theory. Then, the explicit results for the static and dynamic exponents are obtained up to the second order of ${\varepsilon}$-expansion, ${\varepsilon}$ being 4-d, where d is the space dimensionality of the system.

Prediction of Turbulent Flows with Separation and Swirl Using the RNG K-$\varepsilon$ Turbulence Model (RNG k-$\varepsilon$ 난류모델을 이용한 유동박리 및 선회를 가지는 난류유동의 예측)

  • 김성구;오군섭;김용모;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.119-129
    • /
    • 1996
  • This study is concerned with the critical evaluation of predicative capability of a k-$\varepsilon$ turbulence model using the Renormalization Group(RNG) theory. The present numerical model for solution of the Navier-Stokes System is based on the modified PISO algorithms. Computations have been performed with the RNG-based K-$\varepsilon$ model for the two-dimensional flow over a backward-facing step, a confined coaxial jet, and a swirling flow in a swirl combustor. Numerical results are compared with experimental data in terms of mean flow velocities, turbulent kinetic energy, and turbulent stresses. Numerical results clearly indicate that the RNG-based K-$\varepsilon$ turbulence model shows a significant improvement over a standard K-$\varepsilon$ model in predicting the turbulent flows with flow separation and swirl.

  • PDF

Classification of Flow Regimes in Urban Street Canyons Using a CFD Model (CFD 모형을 이용한 도시 도로 협곡에서의 흐름 체계 분류)

  • Kim, Jae-Jin;Baik, Jong-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.5
    • /
    • pp.525-535
    • /
    • 2005
  • Using a three-dimensional computational fluid dynamics (CFD) model with the $k-{\varepsilon}$ turbulence closure scheme based on the renormalization group theory, flow regimes in urban street canyons are classified according to the building and street aspect ratios. The transition between skimming flow (SF) and wake interference flow (WIF) is determined with the size of double-eddy circulation generated behind the upwind building. The transition between WIF and isolated roughness flow (IRF) is determined with the flow reattachment distance from the upwind building. The critical aspect ratios at which the flow transition occurs are found and compared with those in previous studies. The results show that the flow-regime classification method used in this study is quite reasonable and that the values of the critical aspect ratios are generally consistent with those in fluid experiments or large-eddy simulation. The regression equation describing a relation between the building and street aspect ratios at the flow-regime transition is presented.

An Investigation of Flow and Pollutant Dispersion in Three-Dimensional Asymmetric Street Canyons Using a CFD Model (CFD 모형을 이용한 3차원 비대칭 도로 협곡에서의 흐름 및 오염물질 분산 연구)

  • Park, Seung-Bu;Baik, Jong-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.214-224
    • /
    • 2007
  • A three-dimensional computational fluid dynamics (CFD) model with the renormalization group (RNG) $k-{\varepsilon}$ turbulence model is used to examine the effects of difference in building height on flow and pollutant dispersion in asymmetric street canyons. Three numerical experiments with different street canyons formed by two isolated buildings are performed. In the experiment with equal building height, a portal vortex is formed in the street canyon and a typical recirculation zone is formed behind the downwind building. In the experiment with the downwind building being higher than the upwind building, the ambient flow comes into the street canyon at the front of the downwind building and incoming flow diverges strongly in the street canyon. Hence, pollutants released therein are strongly dispersed through the lateral sides of the street canyon. In the experiment with the upwind building being higher than the downwind building, a large recirculation zone is formed behind the upwind building, which is disturbed by the downwind building. Pollutants are weakly dispersed from the street canyon and the residue concentration ratio is largest among the three experiments. This study shows that the difference in upwind and downwind building height significantly influences flow and pollutant dispersion in and around the street canyon.