• Title/Summary/Keyword: renal tubular secretion

Search Result 18, Processing Time 0.022 seconds

Experimental Studies on the Excretion of Uric acid in Rabbit (가토의 요산배설에 관한 실험적연구)

  • Hong, Yoon-Pyo
    • The Korean Journal of Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.67-76
    • /
    • 1971
  • The excretion of uric acid in man has been of great interest because of its importance as an end product in purine metabolism as well as of its role in causing gout. There are many differences in the modes of renal handling of urate among various species of animals. Uric acid actively secreted by the renal tubules of most vertebrate including amphibians, reptiles, and birds. On the other hand, in most mammals net tubular reabsorption of urate appears to be occurred with some exception, such, as Dalmatian dog. In the rabbits, however, the mechanism of renal excretion of uric acid has long been a subject of controversial results. Within a given group it was possible to find individuals with either net secretion or net reabsorption of urate depend on the experimental conditions. Excretion of urate can be depressed or enhanced by a variety of drugs belonging mainly to the aromatic acid group. Diodrast, probenecid, cinchophen and salicylates have been reported as uricosuric agents, on the other hand, lactate, benzoate, pyrazinoic acid, acetazolamide and chlorothiazide are known to be contraindicated to use for the patient with gout since these agents depress the excretion of uric acid from the kidney. However, complex and sometimes the paradoxical effects on the urate excretion by those above mentioned drugs are not uncommon. The experiments were designed to investigate the mechanisms of renal handling of urate as well as the effects of variety of drugs on the tubular transport of uric acid in the rabbits. Male or female white rabbits, from 1.5 to 2.5 kg in weight, were used. The experimental methods used in these studies were clearance, stop-flow, and retrograde injection techniques. The effects of saline, salicylate, chlorothiazide and probenecid were investigated in each experimental conditions. Results of the experiments were summarized as follows; 1. In the rabbits, the rate of urate clearance was always lower than the rate of inulin clearance. The filtration fraction of the urate was one third on an average, therefore, it is estimated that approximately two thirds of filtered urate was reabsorbed. 2. In the kidneys of rabbits, the urate clearance was increased significantly by administration of chlorothiazide and decreased by probenecid. The administration of salicylate had no effect on the rate of urate clearance. The filtration fraction of urate was increased by chlorothiazide and decreased by probenecid. 3. In the stop-flow studies, the U/P ratio of urate was higher than the U/P ratio of inulin in the proximal region, indicating the secretion of uric acid in the proximal tubules. The proximal peak was increased by chlorothiazide and inhibited by probenecid.4. In the retrograde injection studies, the reabsorption of urate in the proximal region was observed, and these reabsorptive transport of urate was depressed by either probenecid or by chlorothiazide. 5. No distal tubular activity was observed under any of these experimental conditions concerning urate transport. The results of these experiments show that probenecid inhibits both secretory and reabsorptive transport of uric acid in the kidney of the rabbits. The enhancement of secretory transport of urate by chlorothiazide in the clearance study was due to the secondary action of chlorothiazide which inhibits the reabsorptive transport of urate in the proximal tubules. It is evident that the urate transport in the kidneys of rabbits is bidirectional nondiffusive flux both secretory and reabsorptive directions in the proximal tubules.

  • PDF

Effect of Cadmium on Organic Acid Transport System in Renal Basolateral Membrane

  • Kim, Ghi-Chan;Kim, Kyoung-Ryong;Kim, Jee-Yeun;Park, Yang-Saeng
    • The Korean Journal of Physiology
    • /
    • v.30 no.2
    • /
    • pp.279-288
    • /
    • 1996
  • Chronic exposure to cadmium impairs various renal tubular functions, including organic acid (anion) secretion. To investigate the mechanism of cadmium-induced alterations in the organic anion transport system, kinetics of p-aminohippurate (PAH) uptake was studied in renal cortical basolateral membrane vesicles (BLMV) isolated from cadmium-intoxicated rats (adult male Sprague-Dawley). Cadmium intoxication was induced by subcutaneous injections of $CdCl_{2}$ (2 mg Cd/kg per day) for 3 weeks. The renal plasma membrane vesicles were prepared by Percoll gradient centrifugation. The vesicular uptake of $^{14}C$-PAH was determined by rapid filtration technique using Millipore filter. Cadmium intoxication resulted in a marked attenuation of $Na^{+}$-dependent, ${\alpha}$-ketoglutarate (${\alpha}$KG)-driven PAH uptake with no changes in $Na^{+}$ and ${\alpha}$KG-independent transport component. Kinetic analysis indicated that Vmax, but not Km, of the $Na^{+}$-dependent, ${\alpha}$KG-driven component was reduced. A similar reduction of $Na^{+}$-dependent, ${\alpha}$KG-driven PAH uptake was observed in normal membrane vesicles directly exposed to inorganic cadmium in vitro, and this was accompanied by an inhibition of both $Na^{+}$-dependent ${\alpha}$KG uptake and ${\alpha}$KG-PAH exchange activity. These results indicate that during chronic exposure to cadmium, free cadmium ions liberated in the proximal tubular cytoplasm directly interact with the basolateral membrane and impair the active transport capacity for organic anions, most likely due to an inhibition of both $Na^{+}$-dicarboxylate cotransporter and dicarboxylate-organic anion antiporter activities.

  • PDF

Effect of Atrial Natriuretic Factor on the Renal Function and Renin Release in Unanesthetized Rabbit (무마취 가토 신장기능에 미치는 Atrial Natriuretic Factor의 영향)

  • Lee, June-K.;Cho, Kyung-W.
    • The Korean Journal of Physiology
    • /
    • v.20 no.1
    • /
    • pp.103-124
    • /
    • 1986
  • Since it has been suggested that atrial receptor may be involved in the mechanism of extracellular volume regulation, it was shown that the granularity of atrial cardiocytes can be changed by water and salt depletion, and that an extract of cardiac atrial tissue, when injected intravenously into anesthetized rats, was shown to cause a large and rapid increase in renal excretion of sodium. Various natriuretic peptides were isolated and synthetized, and the effects were investigated by many workers. Most studies, however, have been carried out under anesthesia and there have teen some controversies over direct effect of the factor on the renal function. Therefore, it was attempted in this study to access the effects of an atrial extract and a synthetic natriuretic factor in unanesthetized rabbits. Intrarenal arterial infusion of atrial extract caused a rapid increase of urinary volume and excretion of sodium. Glomerular filtration rate and renal plasma flow were both increased with no change in filtration fraction. The ventricular extract produced no change in urinary excretion of electrolytes, nor in renal hemodynamics. Intrarenal infusion of synthetic atrial natriuretic factor caused increases of renal excretory rate of sodium, chloride and potassium, and $FE_{Na}$. Glomerular filtration rate, renal plasma flow increased. And free water clearance also increased. Accentuated excretory function correlated well with increased glomerular filtration rate and renal plasma flow during infusion and for 10 minutes following the cessation of the infusion. Renin secretion rate decreased during constant infusion of atrial natriuretic factor. However, no correlation was found with the changes in glomerular filtration rate, renal plasma flow, or urinary excretion of sodium. These results suggest that atrial extract or atrial natriuretic factor induces changes in renal hemodynamics, as in excretion of electrolytes either indirectly through hemodynamic changes or directly by inhibiting tubular reabsorption. At the same time, renin secretory function is affected by the factor possibly through an unknown mechanism.

  • PDF

Pharmacokinetics and Renal Excretion of Sulfamethoxazole in Sheep

  • Shah, Bukhtiar;Mawaz, M.;Ijaz-Javed;Anwar-ul-Hassan-Gilani
    • Archives of Pharmacal Research
    • /
    • v.12 no.3
    • /
    • pp.154-159
    • /
    • 1989
  • Pharmacokinetics and urinary excretion of sulfamethoxazole were investigated in healthy sheep. From the plasma disappearance curves after intravenous bolus injection (50 mg/kg), the half-life and volume of distribution were found to be 76 $\PM$14 min and 0.41 $\PM$ 0.18 lit/kg respectively. Body clearance was 4.06 $\PM$ 1.03 ml/kg/min. Very low Concentration of ddrug was present in plasma after 3 hours of administration and plasma level at 6 hour was only 4.4 $\PM$ 2.0 $\mu$g/ml. The renal clearance of sulfamethoxazole (22 $\PM$ 2.17 ml/min/10 kg) exeeded the creatinine clearance (9.78 $\PM$ 1, 57 ml/min/ 10 kg) which may be due to involvement of active tubular secretion and pH dependent back diffusion. Half of the dose of sulfamethoxazole was excreted as unchanged free drug while acetylated amine comprised of 20 percent within the first 6 hours of drug administration.

  • PDF

Effects of Dietary Rna and Adenine on Feed Intake and Kidney Weight and Function in Adult Cockerels

  • Kubota, T.;Karasawa, Yutaka
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.3
    • /
    • pp.260-264
    • /
    • 1997
  • This study was conducted with adult cockerels to determine whether dietary RNA affects feed intake and renal weight and function, and if the responses are similar to dietary adenine. Chickens were ad libitum fed a RNA diet (100 g/kg) or an adenine diet (9.1 g/kg) for 14 d and catheterized in right jugular vein, hepatic portal vein and both urethers, and saline together with para-amino hippuric acid and sodium thiosulfate was continuously infused into them to evaluate renal functions. Dietary RNA reduced feed intake and body weight, and dietary adenine increased kidney weight expressed as a proportion of body weight (P < 0.05). Feed intake and body weight on the adenine diet and kidney weight on the RNA diet showed similar though non significant tendencies. No calculi were detected in the kidney in chickens fed either the RNA or adenine diets. Plasma inorganic phosphate (IP), Ca and 1,25 $(OH)_2$ vitamin $D_3$ concentrations were increased by dietary RNA and adenine, although the increases of IP and Ca in adenine-fed chickens were not significant. Uric acid and urea concentrations in the blood plasma were unaffected by dietary RNA or adenine. Both dietary RNA and adenine increased renal blood flow rates 3.5-3.7 fold, renal plasma flow rates 3.4-3.7 fold and glomerular filtration rates (GFR) 2.9-3.0 fold (p < 0.01). Clearance of urea, IP and Ca were also enhanced by dietary RNA, but not by dietary adenine. However, neither RNA nor adenine affected uric acid clearance. Only IP clearance was significantly augmented at the glomerular level by dietary RNA (p < 0.05). Glomerular filtration of uric acid, urea, IP and Ca and reabsorption of urea, IP and Ca at the renal tubule were increased by dietary RNA and adenine (p < 0.05), whereas tubular secretion of uric acid was decreased by both dietary treatments. It is concluded that dietary adenine is effective in changing renal function and P and Ca metabolism in chickens.

Effects of Arginine Vasopressin on the Renal Function in Spontaneously Hypertensive Rats (Spontaneously Hypertensive Rat에서 Arginine Vasopressin의 신장효과)

  • Kim, Jong-Hun;Cho, Kyung-Woo;Yun, Young-Yi
    • The Korean Journal of Physiology
    • /
    • v.21 no.2
    • /
    • pp.291-296
    • /
    • 1987
  • There have been reports on the aberration of the control mechanisms of the blood pressure, hormone secretion, and renal functions in spontaneously hypertensive rats (SHR). However, the contribution of the renin-angiotensin system in the maintenance of high blood pressure in SHR is still controversial. Recently, it has been reported that the negative feedback short loop control mechanism of the renin-angiotensin system may be changed in SHR. In the present experiment, it was attempted to explore the possible alterations in the effect of arginine vasopressin (AVP) on the renal function in SHR. Experiments have been done in anesthetized SHR as well as in normotensive Wistar and Sprague-Dawley rats as control groups. Pharmacologic doses of AVP (10-13 mU/rat/10 min) decreased urine volume, excreted amount of creatinine and para-amino-hippuric acid. No differences in these parameters was observed between normotensive and hypertensive rats. AVP increased sodium and potassium excretion, but the responses in SHR were suppressed as compared with normotensive rats. Intravenous infusion of AVP also increased blood pressure in normotensive and hypertensive rats and a vasopressor effect of AVP was attenuated in SHR. There was a positive correlation between the changes in blood pressure and excreted amount of sodium during AVP infusion. These data suggest that the attenuated natriuretic effect of intravenous infusion of AVP may be due to a difference in renal tubular responsiveness to AVP but not due to a difference in vasopressor responsiveness.

  • PDF

Preparation and biological evaluation of 99mTc tricarbonyl cysteine (테크네슘-99엠 트리카보닐 시스테인의 제조 및 생물학적 특성 평가)

  • Jang, Beom-su;Park, Kyung-bae;Yun, Hyo-in
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.1
    • /
    • pp.15-21
    • /
    • 2004
  • This paper describes the development of $^{99m}Tc$ tricarbonyl cysteine as potential renal function diagnostic radiopharmaceutical and evaluation of its biological characteristics using experimental animals. l-Cysteine was labeled efficiently with $^{99m}Tc$ tricarbonyl precursor $([^{99m}Tc(CO)_3(H_2O)_3)]^{+})$ under 30 min heating at ${75^{\circ}C}$. Labeling yield and stability were analyzed by high performance liquid chromatography (HPLC). The biodistribution property of $^{99m}Tc$ tricarbonyl cysteine in mice and its dynamic imaging profiles in rabbits were carried out. To investigate the excretion mechanism of $^{99m}Tc$ tricarbonyl cysteine, tubular transport inhibition test with probenecid was adopted. $^{99m}Tc$ tricarbonyl cysteine was obtained with a high labeling yield under the moderate condition. The results of biodistribution experiments of $^{99m}Tc$ tricarbonyl cysteine in ICR mice at 3 and 90 min provided that $^{99m}Tc$ tricarbonyl cysteine was very highly accumulated in the kidney and bladder, thereby almost 99% of $^{99m}Tc$ tricarbonyl cysteine was excreted within 90 min post injection. The same results were confirmed by the whole body dynamic images for 30 minutes and static images in rabbits at given time intervals after injection. Renogram of $^{99m}Tc$ tricarbonyl cysteine in rabbits showed that its $T_{max}$ and $T_{1/2}$ of $^{99m}Tc$ tricarbonyl cysteine were $2.33{\pm}0.56$ and $4.30{\pm}0.79$ min, respectively. The $T_{max}$ of $^{99m}Tc$ tricarbonyl cysteine with probenecid pretreatment was $2.30{\pm}0.17$ min, whereas $T_{1/2}$ of that with probenecid pretreatment was $17.0{\pm}32.47$ min. $T_{1/2}$ of $^{99m}Tc$ tricarbonyl cysteine with probenecid pretreatment was significantly different, as compared to the result without probenecid (p<0.0001). The results showed that the excretion of $^{99m}Tc$ tricarbonyl cysteine was extremely affected by probenecid. Therefore, $^{99m}Tc$ tricarbonyl cysteine was rapidly excreted from the kidney principally by the tubular secretion.

Disorders of Potassium Metabolism (칼륨 대사 장애)

  • Lee, Joo-Hoon
    • Childhood Kidney Diseases
    • /
    • v.14 no.2
    • /
    • pp.132-142
    • /
    • 2010
  • Hypokalemia usually reflects total body potassium deficiency, but less commonly results from transcellular potassium redistribution with normal body potassium stores. The differential diagnosis of hypokalemia includes pseudohypokalemia, cellular potassium redistribution, inadequate potassium intake, excessive cutaneous or gastrointestinal potassium loss, and renal potassium wasting. To discriminate excessive renal from extrarenal potassium losses as a cause for hypokalemia, urine potassium concentration or TTKG should be measured. Decreased values are indicative of extrarenal losses or inadequate intake. In contrast, excessive renal potassium losses are expected with increased values. Renal potassium wasting with normal or low blood pressure suggests hypokalemia associated with acidosis, vomiting, tubular disorders or increased renal potassium secretion. In hypokalemia associated with hypertension, plasam renin and aldosterone should be measured to differentiated among hyperreninemic hyperaldosteronism, primary hyperaldosteronism, and mineralocorticoid excess other than aldosterone or target organ activation. Hypokalemia may manifest as weakness, seizure, myalgia, rhabdomyolysis, constipation, ileus, arrhythmia, paresthesias, etc. Therapy for hypokalemia consists of treatment of underlying disease and potassium supplementation. The evaluation of hyperkalemia is also a multistep process. The differential diagnosis of hyperkalemia includes pseudohypokalemia, redistribution, and true hyperkalemia. True hyperkalemia associated with decreased glomerular filtration rate is associated with renal failure or increased body potassium contents. When glomerular filtration rate is above 15 mL/min/$1.73m^2$, plasma renin and aldosterone must be measured to differentiate hyporeninemic hypoaldosteronism, primary aldosteronism, disturbance of aldosterone action or target organ dysfunction. Hyperkalemia can cause arrhythmia, paresthesias, fatigue, etc. Therapy for hyperkalemia consists of administration of calcium gluconate, insulin, beta2 agonist, bicarbonate, furosemide, resin and dialysis. Potassium intake must be restricted and associated drugs should be withdrawn.