• Title/Summary/Keyword: renal funtion

Search Result 2, Processing Time 0.018 seconds

Influence of Intracerebroventricular Naloxone on the Renal Function of the Rabbit (측뇌실내(側腦室內) Naloxone의 가토현기능(家兎賢機能)에 미치는 영향(影響))

  • Choi, Bong-Kyu;Kook, Young Johng
    • The Korean Journal of Pharmacology
    • /
    • v.16 no.1 s.26
    • /
    • pp.15-24
    • /
    • 1980
  • As it has been reported that opioids such as morphine and methionine-enkephalin induced antidiuresis and antinatriuresis along with decrease in renal hemodynamics when given intracerebroventricularly(ivt), the renal action of ivt naloxone, a pure antagonist of morphine, and its influence upon the morphine action were investigated in this study. Less than $0.3{\mu}M/kg$ naloxone ivt did not change renal funtion. $1{\mu}M/kg$ ivt tended to, increase urine flow rate and induce transient natriuresis. $3{\mu}M/kg$ ivt produced transient: natriuresis. $3{\mu}M/kg$ ivt produced marked diuresis and natriuresis without any changes of renal hemodynamics. $10{\mu}M/kg$ ivt produced significant increases of urine flow rate and excretion of sodium without any changes of renal hemodynamics. Morphine $0.03{\mu}M/kg$ ivt produced marked decrement in renal hemodynamics along with decreases of water and sodium excretion, as previously shown by Kang. These effects of ivt morphine were completely abolished by the pretreatment with $0.3{\mu}M/kg$ naloxone. These observations provide further evidence that opiate receptors and endorphins in the brain might play an important role in the center-mediated regulation of the renal function in the rabbit.

  • PDF

Effects of Milk Protein levels and Casein/Whey Ratios on Organ Growth and Protein Metabolism in Early Weaned Rats (조기 이유한 흰쥐에서 유단백질의 섭취수준과 조성비가 기관성장과 단백질대사에 미치는 영향)

  • 박미나
    • Journal of Nutrition and Health
    • /
    • v.30 no.1
    • /
    • pp.3-11
    • /
    • 1997
  • This study was conducted to investigate the effects of protein levels and casein/whey ratios on organ growth and protein metabolism in early weaned rats. Premature rats weaned by the 17th day were fed six semipurified synthetic, isocaloric and gel diets that contained three levels (low, medium and high) and two different combinations(casein/whey ; 80 : 20 or 20 : 80) of milk protein for 8 days. On the 25th day postpartum, frest weigth and DNA, RNA and milk protein contents in brain, liver, kidney and muscle were determined to ascertain organ and cellular growth. Futher, with a view to ascertain protein metabolism and renal functions, serum total protein, $\alpha$-amino N, urea N, and creatinine and creatinine and urinary urea N, creatinine and hydroxproline were determined. Total DNA contents of brain, liver and kidney, which may represent as an index of cell numbers in those organs were significantly decreased in the rats fed diets containing low level protein regardless of casein/whey ratio. However, as fat as the rats fed high protein diets were concerned, their fresh weight, protein contents and GFR of kidney were significantly increased. Furthermore, nitrogen components, $\alpha$-amino N, urea N and creatinie in serum and urine were also increassed. Another observation was that high casein/whey ratio significantly facilitated accumulation of porteins in muscle and kidney and urinary hydorxyproline excretion, not affecting the DNA content of those organs. This study showed that low(8%) or high(32%) contents of protein had less desirable effects either on protein metabolism or on organ cellular growth in prematurely weaned rats, whereas there were no effects on general growth and bone strength.

  • PDF