• Title/Summary/Keyword: renal damage

Search Result 223, Processing Time 0.03 seconds

Beneficial effect of Orostachys japonicus A. berger herbal acupuncture on oxidant-induced cell injury in renal epithelial cell (와송약침액이 Oxidant에 의한 신장세포손상에 미치는 영향)

  • Park, Sang-Won;Kim, Cheol-Hong;Youn, Hyoun-Min;Jang, Kyung-Jeon;Ahn, Chang-Beohm;Song, Choon-Ho
    • Korean Journal of Acupuncture
    • /
    • v.24 no.1
    • /
    • pp.171-187
    • /
    • 2007
  • Objectives : This study was performed to determine if Orostachys japonicus A. Berger herbal acupuncture (OjB) provides the protective effect against the loss of cell viability and DNA damage induced by oxidant in renal proximal tubular cells. Methods : The cell viability was evaluated by a MTT reduction assay and DNA damage was estimated by measuring double stranded DNA breaks in opossum kidney (OK) cells, an established proximal tubular cell line. Lipid peroxidation was determined by measuring malondialdehyde (MDA), a product of lipid peroxidation. Results : H2O2 increased the loss of cell viability in a time-dependent manner, which were prevented by 0.1% OjB. The protective effect of OjB was dose-dependent over concentration range of 0.05-0.5%. H2O2 caused ATP depletion and DNA damage, which were prevented by OjB and the hydrogen peroxide scavenger catalase. The loss of cell viability by H2O2 was not affected by the antioxidant DPPD, but lipid peroxidation by the oxidant was completely inhibited by DPPD. Generation of superoxide and H2O2 in neutrophils activated by phorbol-12,13-dibutyrate was inhibited by OjB in a dose-dependent manner. OjB inhibited generation of H2O2 in OK cells treated with antimycin A and exerted a direct H2O2 scavenging effect. Exposure of OK cells to 1 mM tBHP caused a significant depletion of glutathione which was prevented by OjB. OjB accelerated the recovery in cells cultured for 20 hr in normal medium without oxidant following oxidative stress. Conclusions : These results suggest that OjB exerts the protective effect against oxidant-induced cell injury and its protective effect was resulted from radical scavenging and antioxidant activities.

  • PDF

Protective Effect of White-Skinned Sweet Potato (Ipomoea batatas L.) against Renal Damage in Streptozotocin-Induced Diabetic Rats (Streptozotocin으로 유발된 당뇨쥐의 신장 손상에 대한 white-skinned sweet potato (Ipomoea batatas L.) 추출물의 보호효과)

  • Jang, Hye-Won;Bachri, Moch. Saiful;Moon, Kyung-Ok;Park, Jong-Ok
    • Journal of Life Science
    • /
    • v.20 no.2
    • /
    • pp.161-168
    • /
    • 2010
  • White-skinned sweet potato (Ipomoea batatas L.) has been traditionally used for diabetes treatment and management in many countries. In this experiment, methanol extract of white-skinned sweet potato (WSPMe) at a dose of 100 or 200 mg/kg body weight was tested to evaluate its effect on renal damage in streptozotocin (STZ)-induced diabetic rats. Its efficacy was compared with that of insulin secretogogue, glimepiride ($50\;{\mu}g/kg$ body weight). Experimental diabetes was induced by a single dose of STZ (45 mg/kg, i.p.) injection. The WSPMe and glimepiride were administered orally for 14 days and the effects on glucose, renal markers including blood urea nitrogen (BUN), creatinine and lactate dehydrogenase (LDH), lipid peroxide (LPO) level, antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathion-S-transferase (GST) activities in kidney were studied. An increase in BUN, creatinine, LDH, glucose, LPO levels and decrease in SOD, CAT, GPx and GST features were observed in diabetic control rats. Administration of WSPMe at a dose of 200 mg/kg body weight caused a significant improvement in blood glucose, LPO level, renal markers, lipid peroxidation markers and increased antioxidant levels in diabetic kidney. In conclusion, the WSPMe was found to be effective in reducing oxidative stress, thus confirming the ethnopharmacological use of I. batatas L. in protecting diabetes and its complications.

The Occurrence of Renal Scarring in Children with Unilateral Vesicoureteral Reflux (일측성 방광 요관 역류 환아에서 신반흔의 발생)

  • Lee, Tae Ho;Son, Mi Ran;Byun, Soon Ok;Moon, Jung Woong
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.9
    • /
    • pp.998-1003
    • /
    • 2005
  • Purpose : We evaluated the occurrence of renal scarring in children with unilateral vesicoureteral reflux(VUR), and the relationships between renal scar formation and risk factors such as VUR, duration of fever, acute-phase reactant, age, and sex. Methods : We retrospectively analyzed the data of 35 children newly diagnosed with unilateral vesicoureteral reflux after urinary tract infection(UTI) in Wallace Memorial Baptist Hospital between January 1996 and December 2004. Ultrasonography, Erythrocyte sedimentation rate(ESR), and C-reactive protein(CRP) were performed initially. Voiding cystourethrography(VCUG) was performed 1 to 3 weeks after treatment with UTI. $^{99m}Tc$-dimercaptosuccinic acid(DMSA) scan was performed 4 to 6 months after treatment. Results : Scintigraphic renal damage was present in 29 percent of the refluxing and in 3 percent of the nonrefluxing kidneys(P<0.05). The severity of VUR was significantly correlated with renal scar formation(P<0.05). The duration of fever before treatmen($5.0{\pm}1.3$ vs $2.6{\pm}1.3$) and prolonged fever of over 5 days were significantly different between renal scar group and non-renal scar group(P<0.05). ESR($56.3{\pm}23.8$ vs $27.9{\pm}18.1mm/hr$, P<0.05) and CRP($12.8{\pm}7.3$ vs $3.9{\pm}3.8mg/dL$, P<0.05) at the diagnosis of UTI in the renal scar group were higher, compared to those of the non-renal scar group. There were no significant differences in age and sex between the two groups. Conclusion : The presence and grade of VUR, the duration of fever before treatment, prolonged fever over 5 days, ESR, and CRP were risk factors for renal scarring, irrespective of age and sex. Diagnosis and management of VUR, in children with UTI, is important to prevent renal scars.

Modulation Effects of Antioxidant Vitamins on Ochratoxin A-induced Oxidative Toxicity in Mice (마우스에서 Ochratoxin A로 유발된 산화적 독성에 대한 항산화 비타민의 완화작용)

  • Park, Jung-Hyun;Kang, Sung-Jo;Kang, Jin-Soon;Ryu, Jae-Chun;Chung, Duck-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.831-837
    • /
    • 1999
  • Ochratoxin A (OA), a naturally occurring mycotoxin, has been known to cause renal and hepatic lesion in human and animals. This study was carried out to investigate the modulation effects of antioxidant vitamins on OA-induced lipid peroxidation associated with oxidative damage. Vitamin C (10 mg/kg/day) and vitamin E (63.8 mg/kg/day) were administered by intraperitoneal (i.p.) injection to male ICR mice, and 1 hr later, OA which was dissolved in 0.1 M $NaHCO_3$, treated 4 mg/kg/day by i.p. injection. During 4 days repeated, and then measured superoxide dismutase (SOD) activity, catalase activity and malondialdehyde (MDA) formation in microsomes of liver and kidney. Additionally, the relationship between cell damage and modulation effects of antioxidant vitamins was evaluated by comet assay. Results were as followed; i) SOD, catalase activity and MDA level were significantly increased by OA treated, ii) SOD, catalase activity and MDA formation were significantly decreased by antioxidant vitamins combine treated, iii) blood cell damage associated with lipid peroxidation, induced by OA, also modulated by antioxidant vitamins. These results indicated that antioxidant vitamins might be used for prevention of renal and hepatic damage due to ochratoxicosis.

  • PDF

Facilitation of cisplatin-induced acute kidney injury by high salt intake through increased inflammatory response (염분 섭취에 의한 시스플라틴 유도 급성 신장 손상의 촉진과 염증 반응과의 연관성)

  • Ji, Seon Yeong;Hwangbo, Hyun;Kim, Min Yeong;Kim, Da Hye;Park, Beom Su;Park, Joung-Hyun;Lee, Bae-Jin;Lee, Hyesook;Choi, Yung Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.86-93
    • /
    • 2021
  • A high salt diet contributes to kidney damage by causing hypoxia and oxidative stress. Recently, an increase in dietary salt has been reported to induce an inflammatory phenotype in immune cells, further contributing to kidney damage. However, studies on the exact mechanism and role of a high salt diet on the inflammatory response in the kidneys are still insufficient. In this study, a cisplatin-induced acute kidney injury model using C57BL/6 mice was used to analyze the effect of salt intake on kidney injury. Results showed that high salt administration aggravated kidney edema in mice induced by treatment with cisplatin. Moreover, the indicators of kidney and liver function impairment were significantly increased in the group cotreated with high salt compared with that treated with cisplatin alone. Furthermore, the exacerbation of kidney damage by high salt administration was also associated with a decrease in the number of cells in the immune regulatory system. Additionally, high salt administration further decreased renal perfusion functions along with increased cisplatin-induced damage to proximal tubules. This was accompanied by increased expression of T cell immunoglobulin, mucin domain 1 (a biomarker of kidney injury), and Bax (a pro-apoptotic factor). Moreover, cisplatin-induced expression of proinflammatory mediators and cytokines, including cyclooxygenase-2 and tumor necrosis factor-α in kidney tissue, was further increased by high salt intake. Therefore, these results indicate that the kidney's inflammatory response by high salt treatment can further promote kidney damage caused by various pathological factors.

Advanced Glycation Endproduct-induced Diabetic Complications

  • Lee, Hyun-Sun;Hong, Chung-Oui;Lee, Kwang-Won
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1131-1138
    • /
    • 2008
  • Diabetic complications are a leading cause of blindness, renal failure, and nerve damage. Additionally, diabetes-accelerated atherosclerosis leads to increased risk of myocardial infarction, stroke, and limb amputation. At the present time, 4 main molecular mechanisms have been implicated in hyperglyceamia-mediated vascular damage. In particular, advanced glycation endproducts (AGE), which are formed by complex, heterogeneous, sugar-derived protein modifications, have been implicated as a major pathogenic process for diabetic complications. Recently, AGE inhibitors such as aminoguanidin, ALT-946, and pyridoxamine have been reported. Such an integrating paradigm provides a new conceptual framework for future research on diabetes complications and on discovering drugs to prevent the progression of AGE-induced maladies.

Kidney Toxicity Induced by 13 Weeks Exposure to the Fruiting Body of Paecilomyces sinclairii in Rats

  • Jeong, Mi-Hye;Kim, Young-Won;Min, Jeong-Ran;Kwon, Min;Han, Beom-Suk;Kim, Jeong-Gyu;Jeong, Sang-Hee
    • Toxicological Research
    • /
    • v.28 no.3
    • /
    • pp.179-185
    • /
    • 2012
  • Paecilomyces sinclairiis (PS) is known as a functional food or human health supplement. However concerns have been raised about its kidney toxicity. This study was performed to investigate the kidney toxicity of PS by 13 week-oral administration to rats. Blood urea nitrogen (BUN), serum creatinine, and kidney damage biomarkers including beta-2-microglobulin (${\beta}2m$), glutathione S-transferase alpha (GST-${\alpha}$), kidney injury molecule 1 (KIM-1), tissue inhibitor of matrix metalloproteinase 1 (TIMP-1), vascular endothelial growth factor (VEGF), calbindin, clusterin, cystatin C, neutrophil gelatinase-associated lipocalin (NGAL) and osteopontin were measured during or after the treatment of PS. BUN, creatinine and kidney damage biomarkers in serum were not changed by PS. However, kidney cell karyomegaly and tubular hypertrophy were observed dose-dependently with higher severity in males. KIM-1, TIMP-1 and osteopontin in kidney and urine were increased dose dependently in male or at the highest dose in female rats. Increased urinary osteopontin by PS was not recovered at 2 weeks of post-exposure in both genders. Cystatin C in kidney was decreased at all treatment groups but inversely increased in urine. The changes in kidney damage biomarkers were more remarkable in male than female rats. These data indicate that the PS may provoke renal cell damage and glomerular filtration dysfunction in rats with histopathological lesions and change of kidney damage biomarkers in kidney or urine. Kidney and urinary KIM-1 and cystatin C were the most marked indicators, while kidney weight, BUN and creatinine and kidney damage biomarkers in serum were not influenced.

Beneficial Effects of Cynaroside on Cisplatin-Induced Kidney Injury In Vitro and In Vivo

  • Nho, Jong-Hyun;Jung, Ho-Kyung;Lee, Mu-Jin;Jang, Ji-Hun;Sim, Mi-Ok;Jeong, Da-Eun;Cho, Hyun-Woo;Kim, Jong-Choon
    • Toxicological Research
    • /
    • v.34 no.2
    • /
    • pp.133-141
    • /
    • 2018
  • Anti-cancer drugs such as cisplatin and doxorubicin are effectively used more than radiotherapy. Cisplatin is a chemotherapeutic drug, used for treatment of various forms of cancer. However, it has side effects such as ototoxicity and nephrotoxicity. Cisplatin-induced nephrotoxicity increases tubular damage and renal dysfunction. Consequently, we investigated the beneficial effect of cynaroside on cisplatin-induced kidney injury using HK-2 cell (human proximal tubule cell line) and an animal model. Results indicated that $10{\mu}M$ cynaroside diminished cisplatin-induced apoptosis, mitochondrial dysfunction and caspase-3 activation, cisplatin-induced upregulation of caspase-3/MST-1 pathway decreased by treatment of cynaroside in HK-2 cells. To confirm the effect of cynaroside on cisplatin-induced kidney injury in vivo, we used cisplatin exposure animal model (20 mg/kg, balb/c mice, i.p., once a day for 3 days). Renal dysfunction, tubular damage and neutrophilia induced by cisplatin injection were decreased by cynaroside (10 mg/kg, i.p., once a day for 3 days). Results indicated that cynaroside decreased cisplatin-induced kidney injury in vitro and in vivo, and it could be used for improving cisplatin-induced side effects. However, further experiments are required regarding toxicity by high dose cynaroside and caspase-3/MST-1-linked signal transduction in the animal model.

Chemical and Free Radical-scavenging Activity Changes of Ginsenoside Re by Maillard Reaction and Its Possible Use as a Renoprotective Agent

  • Yamabe, Noriko;Song, Kyung-Il;Lee, Woo-Jung;Han, Im-Ho;Lee, Ji-Hwan;Ham, Jung-Yeob;Kim, Su-Nam;Park, Jeong-Hill;Kang, Ki-Sung
    • Journal of Ginseng Research
    • /
    • v.36 no.3
    • /
    • pp.256-262
    • /
    • 2012
  • Reactive oxygen species play critical role in kidney damage. Free radical-scavenging activities of Panax ginseng are known to be increased by heat-processing. The structural change of ginsenoside and the generation of Maillard reaction products (MRPs) are closely related to the increased free radical-scavenging activities. In the present study, we have demonstrated the Maillard reaction model experiment using ginsenoside Re and glycine mixture to identify the renoprotective effect of MRPs from ginseng or ginsenosides. Ginsenoside Re was transformed into less-polar ginsenosides, namely Rg2, Rg6 and F4 by heat-processing. The free radical-scavenging activity of ginsenoside Re-glycine mixture was increased in a temperature-dependant manner by heatprocessing. The improved free radical-scavenging activity by heat-processing was mediated by the generation of antioxidant MRPs which led to the protection of LLC-PK1 renal epithelial cells from oxidative stress. Although the free radical scavenging activities of less-polar ginsenosides were weak, they could protect LLC-PK1 cells from oxidative stress. Therefore, MRPs and less-polar ginsenosides contributed to the combined renoprotective effects against oxidative renal damage.

The Leaf of Diospyros kaki Thumb Ameliorates Renal Oxidative Damage in Mice with Type 2 Diabetes

  • Choi, Myung-Sook;Jeong, Mi Ji;Park, Yong Bok;Kim, Sang Ryong;Jung, Un Ju
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.4
    • /
    • pp.378-383
    • /
    • 2016
  • Diabetic kidney disease is the most common and severe chronic complication of diabetes. The leaf of Diospyros kaki Thumb (persimmon) has been commonly used for herbal tea and medicinal purposes to treat a variety of conditions, including hypertension and atherosclerosis. However, the effect of persimmon leaf on kidney failure has not been investigated. This study aimed to examine the role of persimmon leaf in protecting the diabetes-associated kidney damage in a mouse model of type 2 diabetes. Mice were fed either a normal chow diet with or without powered persimmon leaf (5%, w/w) for 5 weeks. In addition to kidney morphology and blood markers of kidney function, we assessed levels of oxidative stress markers as well as antioxidant enzymes activities and mRNA expression in the kidney. Supplementation of the diet with powered persimmon leaf not only decreased the concentration of blood urea nitrogen in the plasma but also improved glomerular hypertrophy. Furthermore, the persimmon leaf significantly decreased the levels of hydrogen peroxide and lipid peroxide in the kidney. The activities of superoxide dismutase, catalase, and glutathione peroxidase and the mRNA expression of their respective genes were also increased in the kidney of persimmon leaf-supplemented db/db mice. Taken together, these results suggest that supplementation with the persimmon leaf may have protective effects against type 2 diabetes-induced kidney dysfunction and oxidative stress.