• Title/Summary/Keyword: renal cancer cells

Search Result 92, Processing Time 0.028 seconds

A Novel Simple Method to Purify Recombinant Soluble Human Complement Receptor Type 1 (sCR 1) from CHO Cell Culture

  • Wang, Pi-Chao;Hisamune Kato;Takehiro Inoue;Masatoshi Matsumura;Noriyuki Ishii;Yoshinobu Murakami;Tsukasa Seya
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.2
    • /
    • pp.67-75
    • /
    • 2002
  • The human complement receptor type 1 (CR 1, C3 b/C4b receptor) is a polymorphic membrane glycoprotein expressed on human erythrocytes, peripheral leukocytes, plasma and renal glomerular podocytes, which consists of transmembrane and cytoplasmic domains with 30 repeating homologous protein domains known as short consensus repeats (SCR). CR1 has been used as an inhibitor for inflammatory and immune system for the past several years. Recently; it is reported that CRl was found to suppress the hyper-acute rejection in xeno-transplantation and can be used to cure autoimmune diseases. A soluble form of CRl, called sCRl, is a recombinant CRl by cleaving the transmembrane domain at C-terminus and has been expressed in Chinese Hamster Ovary (CHO) cells. Several purification methods for sCR1 from CHO cells have been reported, but most of them require complicated steps at high cost. Moreover, such methods are mostly performed under the pH condition apt to denaturing sCR1 and causes sCRl losing its activity. We here report a rapid and efficient method to purify sCR1 from CHO cell. The new method consists of a two-stage of cell culture by cultivating cells in serum medium followed by serum-free medium, and a two-stage of column purification by means of heparin and gel filtration column chromatography. By using this novel method, sCR1 can be purified in a simple and effective way with high yield and purity, furthermore, the purified sCR1 was confirmed to retain its activity to suppress the complement activation in vivo and ex vivo.

Kidneys with bad ends (신장 기능과 틸로미어)

  • Suh, Dong-Chul
    • Childhood Kidney Diseases
    • /
    • v.12 no.1
    • /
    • pp.11-22
    • /
    • 2008
  • Telomeres consist of tandem guanine-thymine(G-T) repeats in most eukaryotic chromosomes. Human telomeres are predominantly linear, double stranded DNA as they ended in 30-200 nucleotides(bases,b) 3'-overhangs. In DNA replication, removal of the terminal RNA primer from the lagging strand results in a 3'-overhang of uncopied DNA. This is because of bidirectional DNA replication and specificity of unidirectional DNA polymerase. After the replication, parental and daughter DNA strands have unequal lengths due to a combination of the end-replication problem and end-processing events. The gradual chromosome shortening is observed in most somatic cells and eventually leads to cellular senescence. Telomere shortening could be a molecular clock that signals the replicative senescence. The shortening of telomeric ends of human chromosomes, leading to sudden growth arrest, triggers DNA instability as biological switches. In addition, telomere dysfunction may cause chronic allograft nephropathy or kidney cancers. The renal cell carcinoma(RCC) in women may be less aggressive and have less genomic instability than in man. Younger patients with telomere dysfunction are at a higher risk for RCC than older patients. Thus, telomeres maintain the integrity of the genome and are involved in cellular aging and cancer. By studying the telomeric DNA, we may characterize the genetic determinants in diseases and discover the tools in molecular medicine.

  • PDF

YM155 Induces Apoptosis through Downregulation of Anti-apoptotic Proteins in Head and Neck AMC-HN4 Cells (YM155 처리에 의한 두경부 암 AMC-HN4 세포 세포자멸사 유도 효과)

  • Chang, Ho Joon;Kwon, Taeg Kyu;Kim, Dong Eun
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.318-324
    • /
    • 2019
  • Squamous cell carcinoma is the primary tumor type in head and neck cancers, the fifth most common malignant neoplasm world-wide. Survivin, a member of the inhibitor of apoptosis family, is highly expressed in head and neck carcinoma patients and correlated with more aggressive forms. In this study, we investigated whether YM155, a specific survivin inhibitor, could induce apoptosis in head and neck AMC-HN4 cells. YM155 was found to markedly induce apoptosis and cleavage of PARP, a marker of apoptosis. Furthermore, YM155 promoted apoptosis in other cancer cells, such as glioma (U251MG) and renal carcinoma (Caki) cells. In contrast, YM155 had no effect on apoptosis in normal mesangial cells. YM155 significantly induced caspase activation, and pan caspase inhibitor z-VAD-fmk markedly blocked apoptosis, PARP cleavage, and caspase-3 cleavage. Therefore, YM155 was seen to instigate caspase-dependent apoptosis in head and neck AMC-HN4 cells, inducing downregulation of survivin as well as other apoptotic proteins such as c-FLIP and Mcl-1. In addition, the induction of apoptosis and PARP cleavage by YM155 treatment was effectively inhibited in survivin-, c-FLIP- and Mcl-1-over-expressing head and neck AMC-HN4 cells. In conclusion, YM155 is a potent candidate for inducing cell death in head and neck AMC-HN4 cells.

Differential Roles of Vascular Endothelial Growth Factor Receptor-1 and Receptor-2 in Angiogenesis

  • Shibuya, Masabumi
    • BMB Reports
    • /
    • v.39 no.5
    • /
    • pp.469-478
    • /
    • 2006
  • Vascular endothelial growth factor (VEGF)-A, a major regulator for angiogenesis, binds and activates two tyrosine kinase receptors, VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). These receptors regulate physiological as well as pathological angiogenesis. VEGFR2 has strong tyrosine kinase activity, and transduces the major signals for angiogenesis. However, unlike other representative tyrosine kinase receptors which use the Ras pathway, VEGFR2 mostly uses the Phospholipase-$C{\gamma}$-Protein kinase-C pathway to activate MAP-kinase and DNA synthesis. VEGFR2 is a direct signal transducer for pathological angiogenesis including cancer and diabetic retinopathy, thus, VEGFR2 itself and the signaling appear to be critical targets for the suppression of these diseases. VEGFR1 plays dual role, a negative role in angiogenesis in the embryo most likely by trapping VEGF-A, and a positive role in adulthood in a tyrosine kinase-dependent manner. VEGFR1 is expressed not only in endothelial cells but also in macrophage-lineage cells, and promotes tumor growth, metastasis, and inflammation. Furthermore, a soluble form of VEGFR1 was found to be present at abnormally high levels in the serum of preeclampsia patients, and induces proteinurea and renal dysfunction. Therefore, VEGFR1 is also an important target in the treatment of human diseases. Recently, the VEGFR2-specific ligand VEGF-E (Orf-VEGF) was extensively characterized. Interestingly, the activation of VEGFR2 via VEGF-E in vivo results in a strong angiogenic response in mice with minor side effects such as inflammation compared with VEGF-A, suggesting VEGF-E to be a novel material for pro-angiogenic therapy.

The Changes of Serum Angiotensin Converting Enzyme Activity in Lung Cancer Patients (폐암 환자의 혈청 Angiotensin Converting Enzyme 활성도의 변화)

  • Jeong, Ki-Ho;Choi, Hyung-Seok;Yoo, Chul-Gyu;Lee, Kye-Young;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Kim, Keun-Youl;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.39 no.4
    • /
    • pp.310-317
    • /
    • 1992
  • Background: Angiotensin converting enzyme is a glycoprotein peptidyldipeptide hydrolase which cleaves the c-terminal dipeptides of several oligopeptides. It is a menbrane-bound protein mainly synthesized by the endothelial cells. Since the lung has the largest capillary bed of any organ in the body, it is here that ACE acts on circulating substrates like angiotensin I and bradykinin. It is well known that ACE correlates with disease activity in sarcoidosis and also there are reports that changes in serum ACE activity are found in many acute and chronic lung diseases. So we planned this study to see if serum ACE activity can act as a prognostic factor in lung cancer. Methods: Forty-one newly diagnosed lung cancer patients were included in the study group. There were 19 patients with squamous cell lung cancer, 13 with adenocarcinoma, and 9 with small cell carcinoma. Patients were excluded from the study if they had high blood pressure, heart disease, liver disease, renal disease, or other lung disease. Serum ACE activity was analyzed according to cell type, staging, mode of treatment, and clinical response to treatment. Results: 1) There was no difference in serum ACE activity between lung cancer patients and the control group. Also no difference in serum ACE activity was found according to cancer cell type or staging. 2) In patients who underwent curative resection of lung cancer, serum ACE activity was decreased significantly after the operation. 3) In patients who were diagnosed as non-small cell lung cancer and were treated with 4 cycles of anti-cancer chemotherapy without clinical improvement, changes in serum ACE activity were not seen after the treatment. 4) In patients diagnosed as small cell lung cancer treated with 4 cycles of anti-cancer chemotherapy with clinical improvement, changes in serum ACE activity were also not observed. Conclusion: Serum ACE activity was decreased after lung resection but had no relation to cell type, staging, or clinical response to treatment in lung cancer patients. Therefore, serum ACE activity is not suitable in predicting clinical outcome of lung cancer patients.

  • PDF

Protective Effect of Dopaol β-D-glucoside Isolated from East Asian Monk'shood on Cisplatin-Induced Nephrotoxicity (한라돌쩌귀로부터 분리된 Dopaol β-D-glucoside의 신장독성 보호효과)

  • Nho, Jong Hyun;Jung, Ja Kyun;Jung, Ho Kyung;Jang, Ji Hun;Jung, Da Eun;Lee, Ki Ho;Kim, A Hyeon;Sung, Tae Kyoung;Park, Ho;Cho, Hyun Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.4
    • /
    • pp.231-237
    • /
    • 2017
  • Background: Cisplatin is one of the most extensively used chemotherapeutic agents for the treatment of cancer, including bladder, and ovarian cancers. However, it has been shown to induce nephrotoxicity, despite being an outstanding anti-cancer drug. In this study, we investigated the protective effect of dopaol ${\beta}$-D-glucoside (dopaol) on cisplatin-induced nephrotoxicity. Methods and Results: To confirm the protective effect of dopaol on cisplatin-induced nephrotoxicity, HK-2 cells were treated with $20{\mu}M$ cisplatin and $80{\mu}M$ dopaol. Cisplatin increased apoptosis, caspase-3 activity and mitochondrial dysfunction; however pretreatment with $80{\mu}M$ dopaol successfully attenuated apoptosis, caspase-3 activity and mitochondrial dysfunction. To evaluate the protective effect dopaol on cisplatin-induced nephrotoxicity in vivo, we used an animal model (balb/c mice, 20 mg/kg, i.p. once/day for 3 day). The results were similar to those obtained using HK-2 cells; renal tubular damage and neutrophilia induced by cisplatin reduced following dopaol injection (10 mg/kg, i.p. once/day for 3 day). Conclusions: These results indicate that dopaol treatment reduced cisplatin-induced nephrotoxicity in vitro and in vivo, and can be used to treat cisplatin-induced nephrotoxicity. However, further studies are required to determine the toxicity high dose dopaol and the signal pathways involved in its mechanism of action in animal models.

Dietary nobiletin suppresses TGF-β1- Src-caveolin-1 dependent signaling involved with high glucose-induced renal mesangial matrix accumulation (고혈당으로 유도된 신장 mesangial cell 에서 nobiletin의 matrix accumulation 과 TGF-β1-Src-caveolin-1 signaling에 의한 사구체 경화증 억제효과)

  • Kim, Dong Yeon;Kang, Young-Hee;Kang, Min-Kyung
    • Journal of Nutrition and Health
    • /
    • v.53 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • Purpose: Diabetic nephropathy is one of the most important diabetic complications prompted by chronic hyperglycemia, characterized by glomerulosclerosis, tubular fibrosis, and it eventually causes kidney failure. Nobiletin is a polymethoxyflavone present in tangerine and other citrus peels, and has anti-cancer and anti-inflammatory effects. This study investigated the effects of nobiletin on glomerular fibrosis through inhibition of the transforming growth factor (TGF)-β1-Src-caveolin-1 pathway. Methods: Human renal mesangial cells (HRMC) were incubated in media containing 33 mM glucose with or without 1-20 uM nobiletin for 3 day. The cellular expression levels of fibrogenic collagen IV, fibronectin, connective tissue growth factor (CTGF), TGF-β1, Src and caveolin-1 were all examined. In addition, TGF-β1, Src and caveolin-1 proteins were screened to reveal the relationship among TGF-β1-Src-caveolin-1 signaling in glomerular fibrosis. Results: High glucose promoted the production of collagen IV, fibronectin and CTGF in HRMC, which was inhibited in a dose dependent manner by 1-20 uM nobiletin. The Western blot data showed that high glucose elevated the expression of TGF-β1, Src, caveolin-1 and Rho GTPase. When nobiletin was treated to the HRMC exposed to high glucose, the expression of TGF-β1-Src-caveolin-1 was dampened. Finally, TGF-β1-Src-caveolin-1 signaling pathway was activated in high glucose-exposed HRMC, and such activation was encumbered by nobiletin. Conclusion: These result demonstrated that nobiletin blunted high glucose-induced extracellular matrix accumulation via inhibition of the TGF-β1-Src-caveolin-1 related intracellular signaling pathway. Nobiletin may be a potent renoprotective agent to counteract diabetes-associated glomerular fibrosis that leads to kidney failure.

Radiopharmaceuticals for the Therapy of Metastatic Bone Pain (뼈전이의 방사성동위원소 통증치료)

  • Ahn, Byeong-Cheol
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.2
    • /
    • pp.82-89
    • /
    • 2006
  • Bone metastasis is a common sequelae of solid malignant tumors such as prostate, breast, lung, and renal cancers, which can lead to various complications, including fractures, hypercalcemia, and bone pain, as well as reduced performance status and quality of life it occurs as a result of a complex pathophysiologic process between host and tumor cells leading to cellular invasion, migration adhesion, and stimulation of osteoclastic and osteoblastic activity. Several sequelae occur as a result of osseous metastases and resulting bone pain can lead to significant debilitation. A multidisciplinary approach is usually required not only to address the etiology of the pain and its complicating factors but also to treat the patient appropriately. Pharmaceutical therapy of bone pain, includes non-steroidal analgesics, opiates, steroids, hormones, bisphosphonates, and chemotherapy. While external beam radiation therapy remains the mainstay of pain palliation of a solitary lesions, bone seeking radiopharmaceuticals have entered the therapeutic armamentarium for the treatment of multiple painful osseous lesions. $^{32}P,\;^{89}SrCl,\;^{153}Sm-EDTMP,\;^{188}Re/^{186}Re-HEDP,\;and\;^{177}Lu-EDTMP$ can be used to treat painful osseous metastases. These various radiopharmaceuticals have shown good efficacy in relieving bone pain secondary to bone metastasis. This systemic form of metabolic radiotherapy is simple to administer and complements other treatment options. This has been associated with improved mobility in many patients, reduced dependence on narcotic and non-narcotic analgesics, improved performance status and quality of life, and, in some studios, improved survival. All of these agents, although comprising different physical and chemical characteristics, offer certain advantages in that they are simple to administer, are well tolerated by the patient if used appropriately, and can be used alone or in combination with the other forms of treatment. This article illustrates the salient features of these radiopharmaceuticals, including the usual therapuetic dose, method of administration, and indications for use and also describe about the pre-management checklists, and jndication/contraindication and follow-up protocol.

THE ANTICANCER EFFECT OF PACLITAXEL($Taxol^{(R)}$) IN ORAL SQUAMOUS CELL CARCINOMA XENOGRAFT (이종 이식된 구강편평세포 암종에서 Paclitaxel ($Taxol^{(R)}$)의 항암 효과)

  • Kim, Ki-Hwan;Kim, Chul-Hwan;Han, Se-Jin;Lee, Jae-Hoon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.2
    • /
    • pp.95-110
    • /
    • 2006
  • The treatment for oral and maxillofacial carcinoma with chemotherapeutic agents is evaluated by many effective methods to reduce the tumor mass and cancer cell proliferation. However these chemotherapy have many serious side effects, such as bone marrow suppression, renal toxicity, G-I troubles. Therefore a possible approach to develop a clinically applicable chemotherapeutic agent is to screen anticancer activity of Taxol which is known to have very little side effect and have been used to breast cancer and ovarian carcinoma. Taxol is a new anti-microtubular anti-cancer agent extracted from the bark of the Pacific yew, Taxus brevifolia. Paclitaxel(Taxol) acts by promoting tubulin polymerization and over stabilizing microtubules agianst depolymerization. Despite the constant improvements of methods of the cancer treatment especially chemotherapy, the rate of cancer metastasis and recurrent are not decreased. Thus the investigation of new drug which have very little side effect and a possible clinically application continues to be a high priority. Considering that the Taxol have shown very effective chemotherapeutic agent with relatively low toxicity in many solid tumors, it deserves to evaluate its efficacy in oral squamous cell carcinoma. In this study, to investigate the in-vivo and in-vitro anti-cancer efficacy of Taxol in oral squamous cell carcinoma and lastly, the potency of Paclitaxel in the clinical application for oral cancer was evaluated. In vivo study, after HN22 cell line were xenografted in nude mice, the growth of tumor mass was observed, 3 mg/Kg taxol was injected intraperitoneally into nude mice containing tumor mass. The methods of these study were measurement of total volume of tumor mass, histopathologic study, immunohistochemical study, drug resistance assay, growth curve, MTT assay, flow cytometry, cDNA microarray in vivo and in vitro. The results were obtained as following. 1. The visual inspection of the experimental group showed that the volume of the tumor mass was slightly decreased but no significant difference with control group. 2. Ki-67 index was decreased at weeks 4 in experimental group. 3. Microscopic view of the xenografted tumor mass showed well differentiated squamous cell carcinoma and after Taxol injection, some necrotic tissue was seen weeks 4. 4. The growth curve of the tumor cells were decreased after 1day Taxol treatment. 5. According to the MTT assay, HN22 cell line showed relative drug resistancy above $5\;{\mu}g/ml$ concentrations of Taxol. 6. In drug resistance assay, the decrease of cell counts was seen relatively according to concentration. 7. In Flow cytometry, G2M phase cell arrests were seen in low concentration of the Taxol, while S phase cell arrests were seen in high concentration of the Taxol. 8. Using cDNA microarray technique, variable gene expression of ANGPTL4, TXNRD1, FAS, RRAGA, CTGF, CYCLINEA, P19, DUSP5, CEBPG, BTG1 were detacted in the oral squamous cell carcinoma cell after taxol treatment. In this study paclitaxel is effective against oral squamous cell carcinoma cell lines in vitro, but week effect was observed in vivo. So we need continuous study about anticancer effect of taxol in vivo in oral squamous cell carcinoma.

Effects of Pinacidil, a Potassium-Channel Opener, on Biodistribution of Thallium-201 in Tumor-Bearing Mice ($K^+$ 통로개방제 Pinacidil이 종양이식 생쥐에서 Tl-201의 체내분포에 미치는 영향)

  • Lee, Jae-Tae;Chun, Kyung-Ah;Lee, Sang-Woo;Kang, Do-Young;Ahn, Byeong-Cheol;Jun, Soo-Han;Lee, Kyu-Bo;Ha, Jeoung-Hee
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.4
    • /
    • pp.303-311
    • /
    • 2000
  • Purpose: Thallium behaves similarly to potassium in vivo. Potassium channel opener (K-opener) opens ATP-sensitive $K^+$-channel located at cell membrane, resulting in potassium efflux from cytosol. We have previously reported that K-opener can alter biokinetics of Tl-201 in cultured cells and in vivo. Malignant tumor cells have high Na-K ATPase activity due to increased metabolic activities and dedifferentiation, and differential delineation of malignant tumor can be possible with Tl-201 imaging. K-opener may affect tumoral uptake of Tl-201 in vivo. To investigate the effects of pinacidil (one of the potent K-openers) on the localization of the tumor with Tl-201 chloride, we evaluated the changes in biodistribution of Tl-201 with pinacidil treatment in tumor-bearing mice. Materials and Methods: Baltic mice received subcutaneous implantation of murine breast cancer cells in the thigh and were used for biodistribution study 3 weeks later. $100{\mu}g$ of pinacidil dissolved in $200{\mu}l$ DMSO/PBS solution was injected intravenously via tail vein at 10 min after 185 KBq ($5{\mu}Ci$) Tl-201 injection. Percentage organ uptake and whole body retention ratio of Tl-201 were measured at various periods after injection, and values were compared between control and pinacidil-treated mice. Results: Pinacidil treatment resulted in mild decrease in blood levels of Tl-201, but renal uptakes were markedly decreased at 30-min, 1- and 2-hour, compared to control group. Hepatic, intestinal and muscular uptake were not different. Absolute percentage uptake and tumor to blood ratios of Tl-201 were lower in pinacidil treated mice than in the control group at all time points measured. Whole body retention ratio of Tl-201 was lower in pinacidil treated mice ($58{\pm}4%$ ), than in the control group ($67{\pm}3%$) at 24 hours after with injection of $100{\mu}g$ pinacidil. Conclusion: K-opener did not enhance, but rather decreased absolute tumoral uptake and tumor-to-blood ratios of Tl-201. Decreased whole body retention ratio and renal uptake were observed with pinacidil treatment in tumor-bearing mice.

  • PDF