• Title/Summary/Keyword: removal system

Search Result 3,552, Processing Time 0.037 seconds

Utilization of biofilter/photo-catalytic reactor system for the simultaneous treatment of hydrogen sulfide and toluene from waste-air

  • Lim, Kwang-Hee;Ping, Wang Zhi;Lim, Dong-Joon;Lee, Eun-Ju
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.287-292
    • /
    • 2005
  • Transient behavior of biofilter/photo-catalytic reactor system was observed to eliminate both hydrogen sulfide and toluene from waste air at its four sampling ports. The biofilter was packed with a equivolume mixture of granular activated carbon(GAC) and compost as packing media on which Thiobacillus sp. IW and Burkholderia cepacia G4 were inoculated and were fixed. The biofilter/photo-catalytic reactor system was run for eight stages of operation under various operating conditions. As a result the removal efficiencies of hydrogen sulfide and toluene began to decrease from 100% after the inlet loads of hydrogen sulfide and toluene surpassed ca. 100 $S-g/m^{3}/h$ and $161g/m^{3}/h$, respectively, and were rapidly decreased to 60% after the inlet loads of hydrogen sulfide and toluene were increased to 200 $S-g/m^{3}/h$ and $644g/m^{3}/h$, respectively.

  • PDF

A Pilot-Scale Study of Multiple Stage of Constructed Wetland Treatment System and Modeling for Nutrient Removal (Pilot 규모 연속배열형 인공습지의 영양염류 제거효능 규명 및 평가모델 연구)

  • Choi, Seung Il;Iamchaturapatr, Janjit;Rhee, Jae Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.781-788
    • /
    • 2010
  • A pilot study was performed to examine the feasibility of multiple stage of constructed wetland (CW) for nutrient removal. The system is composed of six wetland cells connected with water-ways. The hydraulic of wetland cells is designed as free water surface flow. The treatment capacity was $25m^3d^{-1}$ at HRT of about one day for each cell. The magnitude of nutrient removal was related with the length of wetlands and plant density. Total N and P removal rates were 1353 and $246mg\;m^{-2}d^{-1}$ respectively. The pilot-scale reactor was model as continuous flow system containing contribution of CSTR and PFR typed-reactors. The $k-C^*$ model equation was applied to predict N and P reduction. The result indicated the equation was well guided to estimate reduction of $NO_3-N$ and $PO_4-P$.

Design of Closed Seawater Recirculating Aquaculture System for Korean Rockfish Sebastes schlegeli Culture

  • Peng, Lei;Oh, Sung-Yong;Jo, Jae-Yoon
    • Ocean and Polar Research
    • /
    • v.26 no.1
    • /
    • pp.102-111
    • /
    • 2004
  • Recirculating aquaculture system (RAS) consists of different treatment compartments that maintain water quality within the ranges commonly recommended for fish cultures. However, common RASs still exert considerable environmental impact since concentrations of organic matter and nutrients in their effluents are high. Compared with the traditional RAS, the model RAS developed here use a sedimentation basin for digestion purposes and then use the released volatile organic matter to stimulate a denitrification process. Different treatment compartments for solids, total ammonia nitrogen, and nitrate removal have been reviewed. This paper provides the basic information on designing different treatment compartments as well as the engineering criteria in closed seawater RAS, consisting of circular tanks for fish cultures; dual drain systems, sedimentation basins and foam fractionators for removal of solids; nitrification biofilters for TAN removal; denitrification biofilters for nitrate removal; and aerators for aeration. The main purpose is to outline a common procedure in designing of closed RAS for marine fish culture with an emphasis on easy management and low expense, as well as reduction of the environmental impact.

Advanced 360-Degree Integral-Floating Display Using a Hidden Point Removal Operator and a Hexagonal Lens Array

  • Erdenebat, Munkh-Uchral;Kwon, Ki-Chul;Dashdavaa, Erkhembaatar;Piao, Yan-Ling;Yoo, Kwan-Hee;Baasantseren, Ganbat;Kim, Youngmin;Kim, Nam
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.706-713
    • /
    • 2014
  • An enhanced 360-degree integral-floating three-dimensional display system using a hexagonal lens array and a hidden point removal operator is proposed. Only the visible points of the chosen three-dimensional point cloud model are detected by the hidden point removal operator for each rotating step of the anamorphic optics system, and elemental image arrays are generated for the detected visible points from the corresponding viewpoint. Each elemental image of the elemental image array is generated by a hexagonal grid, due to being captured through a hexagonal lens array. The hidden point removal operator eliminates the overlap problem of points in front and behind, and the hexagonal lens array captures the elemental image arrays with more accurate approximation, so in the end the quality of the displayed image is improved. In an experiment, an anamorphic-optics-system-based 360-degree integral-floating display with improved image quality is demonstrated.

Speculation on the Identity of Bacteria Named TFOs Occurring in the Inefficient P-Removal Phase of a Biological Phosphorus Removal System

  • Lee, Young-Ok;Ahn, Chang-Hoon;Park, Jae-Kwang
    • Environmental Engineering Research
    • /
    • v.15 no.1
    • /
    • pp.3-7
    • /
    • 2010
  • To better understand the ecology of tetrade forming organisms (TFOs) floating in a large amount of dairy wastewater treatment plant (WWTP) effluent (sequencing batch reactor [SBR]) during the inefficient phosphorus (P) removal process of an enhanced biological P removal system, the TFOs from the effluent of a full scale WWTP were separated and attempts made to culture the TFOs in presence/absence of oxygen. The intact TFOs only grew aerobically in the form of unicellular short-rods. Furthermore, to identify the intact TFOs and unicellular short-rods the DNAs of both were extracted, analyzed using their denaturing gradient gel electrophoresis (DGGE)-profiles and then sequenced. The TFOs and unicellular short-rods exhibited the same banding pattern in their DGGE-profiles, and those sequencing data resulted in their identification as Acinetobacter sp. The intact TFOs appeared in clumps and packages of tetrade cells, and were identified as Acinetobacter sp., which are known as strict aerobes and efficient P-removers. The thick layer of extracellular polymeric substance surrounding Acinetobacter sp. may inhibit phosphate uptake, and the cell morphology of TFOs might subsequently be connected with their survival strategy under the anaerobic regime of the SBR system.

Evaluation on Design Factors of Electrolytic Flotation Reactor by Measuring Polarization Curve (분극곡선 측정을 통한 전해부상조의 설계인자 평가)

  • Lim, Bong-Su;Jin, Jing-Zhu;Choi, Chan-Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.244-250
    • /
    • 2007
  • This study was carried out to obtain the optimum design factors for an eletrolytric flotation reactor. When the effluent of the leachate treatment facility was treated under the condition of 10 volts, 30 minutes, at the Al-Al electrode system; COD removal efficiency was 45%, and total phosphorus removal efficiency was 98%. The high removal efficiency was caused by the fact that phosphate was removed by leaching $Al^{3+}$ from two electrodes. The leachate containing high ammonium nitrogen concentration was treated by a batch test under the condition of 60 minutes reaction time and added chloride ion; ammonium nitrogen removal efficiency was 89%. This high efficiency was affected by added chloride ion to wastewater. To find the optimum current density and voltage of the leachate containing chloride ion (ratio of $Cl^-/NH_4-N$ is 11) a electrochemical polarization curve was used. These values were found to be $4.5mA/cm^2$ and about 2.1 V, respectively. When C-Al electrode system was used at a batch test, the total nitrogen removal efficiency was increased by 1.8 to 3.3 times, compared to Al-Al electrode system due to high $Cl_2$ gas production.

Experimental and theoretical justification of passive heat removal system for irradiated fuel assemblies of the nuclear research reactor in a spent fuel pool

  • Ta Van Thuong;O.L. Tashlykov;S.M. Glukhov;D.E. Shumkov;Yu.V. Volchikhina
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2088-2095
    • /
    • 2023
  • The safety of nuclear installations is largely determined by the tightness of fuel elements cladding. As the Fukushima nuclear accident showed, the main task in case of loss of power supply is to ensure reliable removal of residual heat release from spent fuel pool (SFP) with irradiated fuel assemblies (IFAs). The paper presents the results of calculated-experimental studies and thermal-hydraulic modeling of temperature storage modes of IFAs in SFP. Experimental studies of SFP's temperature regime and calculated evaluation of residual heat removal due to the thermal conductivity of building structures surrounding the SFP were performed. To ensure the safe operation of research reactors, it's necessary to know the IFA's residual heat power (RHP) in the reactor and SFP, which is determined depending on the operating time of fuel assemblies (FAs) and the IFAs calculated holding time. The FAs operating time depends on the reactor energy output. The IFAs calculated holding time is determined by the fuel burnup, U-235 mass in the fuel, and reactor utilization factor. The IFAs fuel burnup was calculated using the MCU-PTR program. Also presented are the RHP's calculation results using some of the empirical dependencies. The concept of a passive heat removal system (PHRS) based on thermosyphon's operating principle was proposed.

Preliminary design and assessment of a heat pipe residual heat removal system for the reactor driven subcritical facility

  • Zhang, Wenwen;Sun, Kaichao;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3879-3891
    • /
    • 2021
  • A heat pipe residual heat removal system is proposed to be incorporated into the reactor driven subcritical (RDS) facility, which has been proposed by MIT Nuclear Reactor Laboratory for testing and demonstrating the Fluoride-salt-cooled High-temperature Reactor (FHR). It aims to reduce the risk of the system operation after the shutdown of the facility. One of the main components of the system is an air-cooled heat pipe heat exchanger. The alkali-metal high-temperature heat pipe was designed to meet the operation temperature and residual heat removal requirement of the facility. The heat pipe model developed in the previous work was adopted to simulate the designed heat pipe and assess the heat transport capability. 3D numerical simulation of the subcritical facility active zone was performed by the commercial CFD software STAR CCM + to investigate the operation characteristics of this proposed system. The thermal resistance network of the heat pipe was built and incorporated into the CFD model. The nominal condition, partial loss of air flow accident and partial heat pipe failure accident were simulated and analyzed. The results show that the residual heat removal system can provide sufficient cooling of the subcritical facility with a remarkable safety margin. The heat pipe can work under the recommended operation temperature range and the heat flux is below all thermal limits. The facility peak temperature is also lower than the safety limits.

Simultaneous Carbon and Nitrogen Removal Using an Integrated System of High-Rate Anaerobic Reactor and Aerobic Biofilter (고효율 혐기성반응조 및 호기성여상 조합시스템에 의한 질소·유기물 동시 제거)

  • Sung, Moon Sung;Chang, Duk;Seo, Seong Cheol;Chung, Bo Rim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.55-65
    • /
    • 1999
  • AF(anaerobic filter)/BAF(biological aerated filter) system and UASB(upflow anaerobic sludge blanket)/BAF system, of which system effluents were recirculated to the anaerobic reactors in each system, were operated in order to investigate the performance in simultaneous removal of organics and nitrogen in high-strength dairy wastewater. Advanced anaerobic treatment processes of AF and UASB were evaluated on applicability as pre-denitrification reactors, and BAF was also evaluated on the performance in oxidizing the remaining organics and ammonia nitrogen. At system HRTs of 4.0 to 4.5 days and recirculation ratios of one to three, the AF/BAF system could achieve more than 99% of organics removals and 64 to 78% of total nitrogen removals depending upon the recirculation ratio. Although the UASB/BAF system also showed more than 99% of organics removals, total nitrogen removals in the UASB/BAF system were 53 to 66% which are lower than those in the AF/BAF system at the corresponding recirculation ratios. Optimum recirculation ratios considering simultaneous removal of organics and nitrogen and cost-effectiveness, were in the range of two to three. The upflow AF packed with crossflow module media, as a primary treatment of the anaerobic reactor/BAF system, showed better performances in denitrification, SS removals, and gas production than the UASB. Higher loading rate of suspended solids from the UASB increased the backwashing times in the following BAF. Especially, at a recirculation ratio of three in the UASB/BAF system, the increase in head loss due to clogging in the BAF caused frequent backwashing, at least once d day. The BAF showed the high nitrification efficiency of average 99.2% and organics removals more than 90% at organics loading rate less than $1.4KgCOD/m^3/d$ and $COD/NH_3-N$ ratio less than 6.4. It was proved that the simplified anaerobic reactor/BAF system could maximize the organics removal and achieve high nitrogen removal efficiencies through recirculation of system effluents to the anaerobic reactor. The AF/BAF system can, especially, be a cost effective and competitive alternative for the simultaneous removal of organics ana nitrogen from wastewaters.

  • PDF

Enhancement of Sewage Treatment Efficiencies by Recirculation in Absorbent Biofilter System (재순환에 의한 흡수성 바이오필터 시스템의 오수처리효율 향상)

  • Kwun, Soon-Kuk;Cheon, Gi-Seol;Kim, Song-Bae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.69-76
    • /
    • 2005
  • An Absorbent Biofilter System (ABS) combined with the recirculation process was investigated for the feasible application in additional removing of organics (BOD, SS) as well as nutrients (TN, TP) from small Community wastewater in Korea. Polyurethane biofilter media with high porosity and large surface area were /used for the aerobic system. A part of treated wastewater was recirculated into the anoxic septic tank to promote removal of nutrients. The concentrations of BOD and SS of treated wastewater satisfied the regulations for small on-site wastewater treatment facility (10 mg/L) during the overall experimental period. The effluent concentrations of BOD and SS were decreased with enhancement of removal efficiencies of 95.7 and $96.7\%$. The nitrogen and phosphorus removal efficiencies by the recirculation increased to $52.9\%\;and\;43.2\%$ in average during the overall experimental period, respectively. With the improvement, these values were increased as much as additional 42 and $18\%$ compared with those of non-recirculation. The rates of nitrification and denitrification were enhanced showing $65\~77\%\;and\;42\~92\%$, respectively. The described process modification is a low cost and effective method of enhancing nitrogen and phosphorus removal, especially on existing systems without changing major design components of a treatment facility.