• Title/Summary/Keyword: removal of soil

Search Result 1,161, Processing Time 0.028 seconds

The Effect of Microorganisms, Nutrients, and Surfactants on the Bioremediation of Oil-Contaminated Soil (유류오염토양의 정화에서 미생물, 영양제 및 계면활성제의 영향)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.53-58
    • /
    • 2009
  • This study was focused on the investigation of the characteristics of TPH and BTEX removal in oil-contaminated sandy soil and fine soil with injection of microorganisms, nutrients, and surfactants. As the result of the experiments maintained moisture contents by 10${\sim}$20%, the TPH removal efficiency in oil-contaminated sandy soil was the highest in C-1 (microorganisms+nutrients), and the efficiency in C-2 (microorganisms+nutrients+surfactants) was higher than the efficiency in C-0(microorganisms). In 81 days, TPH removal efficiency in case of C-0, C-1 and C-2 showed 51%, 83%, 63% respectively. The results of D group with fine soil showed similar trends as C group, but the TPH removal efficiency of D group was lower than that of C group. Those of both C and D group were the highest in 1 group (microganisms+nutrients). The pH of fine soil was some lower than that of sandy soil or was similar to sandy soil. In 14 days, BTEX removal efficiency in case of C-0, C-1, C-2, D-0, D-1 and D-2 showed 99.8%, 99.4%, 96.0%, 99.5%, 99.2%, 96.3% respectively. Those of both C and D group were the highest in 0 group (microganisms).

디젤오염토양복원을 위한 고온공기 주입/추출 공정의 토양 파일 공법에의 적용 연구

  • 박민호;박기호;홍승모;고석오
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.63-67
    • /
    • 2004
  • A field pilot study on remediation of diesel-contaminated soil by hot air injection/extraction process constructing soil piling system was conducted to evaluate the effects of hot air on the removal of diesel and each constituent. After the heating process of 2 months, the equilibrium temperature of soil reached to 10$0^{\circ}C$ and soil TPH concentration was reduced to about 72% against the initial concentration. Additional extraction process of 2 months induced the continuous extraction of residual diesel and the increment of microbial activity, which made soil TPH concentration reduced to 95%. In addition biological removal of non volatile constituents in diesel was verified indirectly and the removal pattern of each DRO(diesel range organic) as soil temperature was explained.

  • PDF

A study on the removal of heavy metals from soils using electrokinetic soil processing and ion exchange membrane (전기장과 이온교환막을 이용한 토양에서의 중금속 제거에 대한 연구)

  • 김순오
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.43-51
    • /
    • 1999
  • In order to remediate hazardous waste site, a process of electrokinetically purging chemicals from saturated soil is examined by laboratory experiments. Electrokinetic soil remediation is one of the most promising soil decontamination processes that habe igh removal efficiency and time-effectiveness in low-permeability soils such as clay. Being combined with several mechanisms-electromigration, elec troosmosis, diffusion and electrolysis of water, electrokinetic soil processing can remove non-polar organics as well as ionic contaminants. The objectives of this study are; 1) the exploration of the feasibility of electrokinetic soil processing on the removal of heavy metals, 2) the investigation of applicability to the tailing-soils in aban doned mining area, 3) the examination of effects of soil pH and conductivity on the transport phenomena of elements in soils, and 4) the investigation of the applicability of the ionexchange membrance to the efficient collection of heavy metals removed from contaminated soils. With the result of this study, it is suggested that the removal efficiency is significantly influenced by applied voltage & current, type of purging solutions, soil pH, permeability and zeta potentials of soil. Although further study should be needed, it is possible to collect removed heavy metals with ion-exchange membrance in cathode compartment.

  • PDF

Applicability on Microwave Technology to the Remediation of PAHs(Polynuclear Aromatic Hydrocarbons) Contaminated Soil (PAHs(Polynuclear Aromatic Hydrocarbons)에 오염된 토양 회복공정으로서 마이크로파의 적용성 검토연구)

  • 문경환;변자진;김덕찬
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.3
    • /
    • pp.102-112
    • /
    • 1998
  • The fate of polynuclear aromatic hydrocarbons(PAMs) in soil has drawn increasing concern due to their toxic, carcinogenic, and mutagenic effects. These compounds have been most commonly carried into the soil in solvent, as in a coal tar or cresote. This study has been focused on the applicability of microwave treatment of soils contaminated by PAHs. Studies have been conducted with soil(particle diameter $150~500{\mu}m$), which was spiked with naphthalene, acenaphthene, fluorene, anthracene and pyrene, with different moisture contents. According to the results of the research, up to 95% removal efficiency of naphthalene was observed in 10% moisturized soil for five minutes microwave inducing And the removal efficiency of acenaphthene and fluorene were observed to be 88.9%, 67.2% in 30% moisturized soil, respectively. Due to the low vapor pressure, anthracene and pyrene showed the low removal efficiency. In case the powdered activated carbon was added to the soil as a sensitizer, anthracene and pyrene were decomposed into a various by-products. Decomposition rates of anthracene and pyrene were increased with incresing addition of a PAC to the soil. It is concluded that the developement of a microwave process to remediate soils contaminated with PAHs is foreseeable. But additional studies are also needed regarding continuous microwave heating process.

  • PDF

Removal of Simultaneously Biological Organic, Nitrogen, and Phosphorus Removal in Sequencing Batch Reactors using Night-soil (연속회분식 반응기(Sequencing Batch Reactor)를 이용한 분뇨중 유기물과 질소 및 인의 동시제거)

  • 한기백;박동근
    • Journal of Environmental Science International
    • /
    • v.6 no.6
    • /
    • pp.697-709
    • /
    • 1997
  • Sequencing Batch Reactor(SBR) experiments for organics and nutrients removal have been conducted to find an optimum anaerobic/anoxic/aerobic cycling time and evaluate the applicability of oxidation-reduction potential(ORP) as a process control parameter. In this study, a 61 bench-scale plant was used and fed with night-soil wastewater in K city which contained TCODcr : 10, 680 mg/l, TBm : 6, 893 mg/l, $NH_4^+-N$ : 1, 609 mg/l, $PO_4^{3-}-P$ : 602 mg/l on average. The cycling time In SBRs was adjusted at 12 hours and 24 hours, and then certainly included anaerobic, aerobic and inoxic conditions. Also, for each cycling time, we performed 3 series of experiment simultaneously which was set up 10 days, 20 days and 30 days as SRT From the experimental results, the optimum cycling time for biological nutrient removal with nlght-soil wastewater was respctively 3hrs, 5hrs, 3hrs(anaerobic-aerobic-anoxic), Nitrogen removal efficiency was 77.9%, 77.9%, 81.7% for each SRT, respectively. When external carbon source was fed in the anoxic phase, ORP-bending point indicating nitrate break point appeared clearly and nitrogen removal efficiency increased as 96.5%, 97.1%, 98.9%. Phosphate removal efficiency was 59.8%, 64.571, 68.6% for each SRT. Also, we finded the applicability of ORP as a process control parameter in SBRs.

  • PDF

The Effects of Protease and Lipase on the Detergency of Fabrics (프로테아제와 리파제가 직물의 세척에 미치는 영향)

  • Lee, Jeong-Sook;Chung, So-Wha
    • Fashion & Textile Research Journal
    • /
    • v.2 no.4
    • /
    • pp.339-345
    • /
    • 2000
  • The effects of protease and/or lipase on the removal of protein soil and oily soil were investigated in this study. Cotton, rayon, nylon, and PET fabrics were soiled by padding of fresh bovine blood and spotting of mixed artificial sebum evenly. The soiled fabrics were aged at $130^{\circ}C$ for 30 minutes. The fabrics were washed by using Terg-O-Tometer at various conditions. Protease and/or lipase were added in the alcohol ethoxylate (AE) detergent solution. The removal efficiency was evaluated by analysis of protein and/or oil on the fabrics before and after washing, respectively. The detergency of protein and/or oil on the fabrics was discussed with enzyme concentration, washing time, washing temperature, pH of washing solution and fiber characteristics. The hydrolysis of protease improved effectively the removal of oil as well as protein by increasing removal of protein-oil mixed soil at the same time. The effect of lipase added detergent solution was slightly shown on the removal of oil and/or protein. The removal of mixed soils from cotton fabrics was very low because of large amount of residual soils caused by the physical characteristics of cotton fiber.

  • PDF

Assessment of Blood Meal Applicability for Removal of DDT from Agricultural Soil (농경지 내 DDT 제거를 위한 동물혈분 적용 가능성 평가)

  • Kim, Taein;Jho, Eun Hea
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.2
    • /
    • pp.89-94
    • /
    • 2020
  • BACKGROUND: Persistent organic contaminants such as dichlorodiphenyltrichloroethane (DDT) are often found in agricultural soils decades after it was banned in Korea. This study uses hemoglobin and hemoglobin-containing blood meal to reduce the residual DDT in soil. METHODS AND RESULTS: Hemoglobin or blood meal with or without hydrogen peroxide (H2O2) was mixed with the DDT-spiked soil prepared for this study, and samples were taken over 14 d-degradation period to measure the residual DDT concentrations. With only hemoglobin, DDT was completely removed after 14 d, while with both hemoglobin and H2O2, 73%, on average, removal was observed. Similarly, the blood meal removed 73% of DDT, but with H2O2, the DDT removal was only 39%. The lower DDT removal in the presence of H2O2 can be attributed to the adverse effects of reactive species. Hemoglobin was more effective than blood meal for DDT removal in a given time; however, with additional blood meal injection, complete DDT removal was achieved. CONCLUSION: Overall, this study shows that the blood meal that is used as a fertilizer can potentially be used to remove residual contaminants such as DDT in agricultural soil.

A Study on the Removal Efficiency of the Soil Vapor Extraction by Numerical Simulation (수치모형에 의한 토양증기추출법의 제거효율에 관한 연구 - 차단벽, 추출유량, 펌프가동방법의 영향 -)

  • Lee, Chang-Su
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.2
    • /
    • pp.121-129
    • /
    • 1999
  • When the soil vapor extraction as a remediation method of contaminated soil and groundwater has been used, the effects of curtain wall, mode of pump operation and magnitude of extraction flowrate were examined by numerical simulation. Consequently, it was found that the removal rate was enhanced in case that the curtain wall was established around the extraction well with the extraction pumps operated alternatively. It was because that the removal of high density gas around the extraction well was possible. It was found that the removal efficiency of TCE gas did not depend on the extraction flowrate. However, the removal rate of TCE gas at varying extraction flowrate was not enhanced flowrate increase.

  • PDF

The study of the soil removal in cationic cotton fabrics. (양성면직물의 세정성에 관한 연구)

  • Shin Yong Son
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.3 no.1
    • /
    • pp.13-18
    • /
    • 1979
  • Many researches have found that the anionic surfactants are effective when the anionic soil is attached to the cotton fabrics. However, this research investigated the relationship of the super soil removal and surfactants when the anionic and cationic soil was attached to the cationic cotton fabrics. The result is that the cationic surfactants are vary effective for soil removal in the cationic cotton fabrics. The processing and nature of cationic cotton fabrics are treated and investigated as follows: Cotton fabrics are heated in the presence of ethylenimine and acetic acid dissolved in benzene to contain a significant amount of fixed nitrogen. Some polymer was formed but removal by washing with benzene and water. The optinium molor ratio of acid-to-ethylenimine seemed to be in the range 1: 10. The treated cotton fabrics dyed with acid Orange II dyes, and nitrogen content in the treated cotton fabrics were determined by the Kjeldahl method.

  • PDF

KH2PO4-aided soil washing for removing arsenic from water-stable soil aggregates collected in southern China

  • Zhao, Ranran;Li, Xiaojun;Zhang, Zhiguo;Zhao, Guanghui
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.304-310
    • /
    • 2016
  • Removal of arsenic (As) from soil aggregates with particle sizes of > 2.0, 2.0-0.25, 0.25-0.053, < 0.053 mm by soil washing of $KH_2PO_4$ and the kinetics of As releasing from soil aggregates were investigated. Effects of $KH_2PO_4$ concentration, ratio of liquid/soil and washing duration on the removal were fully explored. The results showed that the high As removal was obtained in > 2 mm aggregates (48.56%) and < 0.053 mm aggregates (42.88%) under the optimum condition ($KH_2PO_4$ concentration of 0.1 mol/L, and liquid/soil ratio (10 mL/g) for 360 min). 62.82% of As was extracted from aggregates with size less than 0.25 mm. Only 11.88% was contributed by the large aggregates (> 2.0mm). Using $KH_2PO_4$ washing, it was also found that extracted As is mainly in form of either specifically sorbed As or As associated with oxides of Fe and Al. Elovich model can describe the removal process of As more precisely than Two-constant kinetic models. The optimum washing conditions and removal process is also applied to bulk soil. This technique in this study is reliable, cost-effective and offers a great potential for practical application in soil remediation.