• Title/Summary/Keyword: removal of nitrogenous compounds

Search Result 16, Processing Time 0.038 seconds

Removing nitrogenous compounds from landfill leachate using electrochemical techniques

  • Nanayakkara, Nadeeshani;Koralage, Asanga;Meegoda, Charuka;Kariyawasam, Supun
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.339-346
    • /
    • 2019
  • In this research, applicability of electrochemical technology in removing nitrogenous compounds from solid waste landfill leachate was examined. Novel cathode material was developed at laboratory by introducing a Cu layer on Al substrate (Cu/Al). Al and mild steel (MS) anodes were investigated for the efficiency in removing nitrogenous compounds from actual leachate samples collected from two open dump sites. Al anode showed better performances due to the effect of better electrocoagulation at Al surface compared to that at MS anode surface. Efficiency studies were carried out at a current density of $20mA/cm^2$ and at reaction duration of 6 h. Efficiency of removing nitrate-N using Al anode and developed Cu/Al cathode was around 90%. However, for raw leachate, total nitrogen (TN) removal efficiency was only around 30%. This is due to low ammonium-N removal as a result of low oxidation ability of Al. In addition to the removal of nitrogenous compounds, reactor showed about 30% removal of total organic carbon. Subsequently, raw leachate was diluted four times, to simulate pre-treated leachate. The diluted leachate was treated and around 88% removal of TN was achieved. Therefore, it can be said that the reactor would be good as a secondary or tertiary treatment step in a leachate treatment plant.

Simultaneous degradation of nitrogenous heterocyclic compounds by catalytic wet-peroxidation process using box-behnken design

  • Gosu, Vijayalakshmi;Arora, Shivali;Subbaramaiah, Verraboina
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.488-497
    • /
    • 2020
  • The present study investigates the feasibility of nitrogenous heterocyclic compounds (NHCs) (Pyridine-Quinoline) degradation by catalytic wet peroxidation (CWPO) in the presence of nanoscale zerovalent iron supported on granular activated carbon (nFe0/GAC) using statistical optimization technique. Response surface methodology (RSM) in combination with Box-Behnken design (BBD) was used to optimize the process parameters of CWPO process such as initial pH, catalyst dose, hydrogen peroxide dose, initial concentration of pyridine (Py) and quinolone (Qn) were chosen as the main variables, and total organic carbon (TOC) removal and total Fe leaching were selected as the investigated response. The optimization of process parameters by desirability function showed the ~85% of TOC removal with process condition of initial solution pH 3.5, catalyst dose of 0.55 g/L, hydrogen peroxide concentration of 0.34 mmol, initial concentration of Py 200 mg/L and initial concentration of Qn 200 mg/L. Further, for TOC removal the analysis of variance results of the RSM revealed that all parameter i.e. initial pH, catalyst dose, hydrogen peroxide dose, initial concentration of Py and initial concentration of Qn were highly significant according to the p values (p < 0.05). The quadratic model was found to be the best fit for experimental data. The present study revealed that BBD was reliable and effective for the determination of the optimum conditions for CWPO of NHCs (Py-Qn).

Removal Characteristics of Nitrogenous Organic Chlorination Disinfection By-Products by Activated Carbons and Biofiltration (활성탄과 생물여과 공정에서의 유기질소계 염소 소독부산물 제거 특성)

  • Seo, In-Suk;Son, Hee-Jong;Choi, Young-Ik;Ahn, Wook-Sung;Park, Chung-Kil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.2
    • /
    • pp.184-191
    • /
    • 2007
  • Coal-, coconut- and wood-based activated carbons and anthracite were tested for an adsorption and biodegradation performances of nitrogenous chlorinated by-products such as chloropicrin, DCAN, DBAN and TCAN. In early stage of operations, an adsorption performance was a main mechanism for removal of nitrogenous chlorinated by-products, however as increasing populations of attached bacteria, the bacteria played a major role in removing nitrogenous chlorinated by-products in the activated carbon and anthracite biofilter. It was also investigated that the compounds were readily subjected to biodegrade. Whilst the coal- and coconut-based activated carbons were found most effective in adsorption of the compounds, the anthracite was worst in adsorption of the compounds. Highest populations and activity of attached bacteria were shown in the coal-based activated carbon. The populations and activity of attached bacteria decreased in the order: coconut-based activated carbon > wood-based activated carbon > anthracite. The attached bacteria were inhibited for removal of the compounds at temperatures below $10^{\circ}C$. The attached bacteria were more active at higher water temperatures$(20^{\circ}C\;<)$ but less active at love. water temperature$(10^{\circ}C\;>)$. The removal efficiencies of the compounds obtained using coal-, coconut- and wood-based activated carbons and anthracite were directly related to the water temperatures. In particular, water temperature was the most important factor for removal of the compounds in the anthracite biofilter because the removal of the compounds depended mainly on biodegradation. Therefore, the main removal mechanism of the compounds the main mechanism on the removal of the compounds using activated carbon was both adsorption and biodegradation by the attached bacteria. The observation suggests that using coal-based activated carbon is the best for removal of nitrogenous chlorinated by-products in the water treatment.

Kinetics of Removing Nitrogenous and Phosphorus Compounds from Swine Waste by Growth of Microalga, Spirulina platensis

  • Kim, Min-Hoe;Chung, Woo-Taek;Lee, Mi-Kyung;Lee, Jun-Yeup;Ohh, Sang-Jip;Lee, Jin-Ha;Park, Don-Hee;Kim, Dong-Jin;Lee, Hyeon-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.455-461
    • /
    • 2000
  • Abstract Spirulina platensis was grown in SWlUe waste to reduce inorganic compowlds and simultaneously produce feed resources. Spirulina platensis prefers nitrogenous compounds in Ibe order: $NH_4^{+}-N>NO_3^{-}-N>simple-N$ such as urea and simple amino acids. It even consumes $NH_4^{+}-N$ first when urea or nitrate are present. Therefore, the content of residual $NH_4^{+}-N$ in Spimlina platensis cultures can be determined by the relative extent of the following processes: (i) algal uptake and assimilation; (ii) ammonia stripping; and (iii) decomposition of urea to NH;-N by urease-positive bacteria. The removal rates of total nitrogen ffild total phosphorus were estimated as an indicator of the treatment effIciency. It was found that Spirulina platensis was able to reduce 70-93% of $P_4^{3-}-P$, 67-93% of inorganic nitrogen, 80-90% of COD, and 37-56% of organic nitrogen in various concentrations of swine waste over 12 days of batch cultivation. The removal of inorganic compounds from swine waste was mainly used for cell growth, however, the organic nitrogen removal was not related to cell growlb. A maximum cell density of 1.52 dry-g/l was maintained with a dilution rate of 0.2l/day in continuous cultivation by adding 30% swine waste. The nitrogen and phosphorus removal rates were correlated to the dilution rates. Based on the amino acid profile, the quality of the proteins in the Spirulina platensis grown in the waste was the same as that in a clean culture.ulture.

  • PDF

A Study on the Limiting Factors in Nitrogen Removal with Fixed Biofilm Process (고정생물막 공법을 이용한 질소제거에 있어서 제한요인에 관한 연구)

  • 지용희
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.3
    • /
    • pp.63-68
    • /
    • 1996
  • This study was to discuss limiting factors influenced on the removal efficiencies of nitrogenous compounds investigated using the polypropyrene media which was to attach microorganism in order to apply the fixed-biofilm process. The main limiting factors are the hydraulic retention time (HRT), C/N ratio, $COD/NO_{3}-N$ ratio and temperature. The hydraulic retention time HRT were 6, 8, 10, 12 hrs and the C/N ratio range was 2.5-9.5. The $COD/NO_{3}-N$ ratio range was 3.2-21.9 and the temperature were 15, 20, 25, 30, $35^{\circ}C$, respectively. The results of this study are summerized as follows. 1. Hydraulic retention time (HRT) to obtain removal efficiencies of T-N higher than 85% had to be 10 hrs above. 2. The removal efficiencies of T-N decreased at C/N ratio from 6.2 to 4.8 in this anoxic-contact aeration system. 3. Denitrification rate decreased at $COD/NO$_{3}$-N$ ratio from 8.0 to 5.0 4. As temperature increased, removal efficiencies of T-N increased.

  • PDF

CHARACTERISTICS OF A WATER-PURIFICATION SYSTEM USING IMMOBILIZED PHOTOSYNTHETIC BACTERIA BEADS

  • Kim, Joong-Kyun;Park, Kyoung-Joo;Cho, Kyoung-Sook;Nam, Soo-Wan;Kim, Yong-Ha
    • Environmental Engineering Research
    • /
    • v.10 no.5
    • /
    • pp.227-238
    • /
    • 2005
  • The characteristics of nitrogen removal by the free cell and the immobilized cell of R. capsulatus were investigated. Denitrification by R. capsulatus cells resulted in reduction of ORP with the rapid depletion of DO and the increase of pH. Without accumulation of nitrite, the removal efficiencies of ${NO_3}^-$-N for the free cell and the immobilized cell were 99.1 and 99.3%, respectively. During the three-month experiment of goldfish breeding equipped with a water-purification biofilter, the average values of pH and total cell numbers present in an aquarium were not significantly different between water-purification system and the control. The average concentrations of ${NH_4}^+$-N and ${PO_4}^{2-}$-P in water-purification system were relatively low, compared to that in the control. Goldfish died at $11^{th}$, $16^{th}$, $43^{rd}$, and $67^{th}$ days in the control, while goldfish died at $10^{th}$, $20^{th}$, and $39^{th}$ days in the water-purification system. On the days of goldfish's death, the total concentrations of nitrogenous compounds except for ${NO_2}^--N$ were higher than those on the other days of the experiment, especially with the concentrations of ${NH_4}^+$-N ranging from 7.4 to 13.5 mg/L. The water-purification system also showed the less turbidity of water with more active movement of goldfish than the control. PVA gel beads showed almost the full denitrifying ability even after the long-term experiment. As a result, the water-purification system was effective to remove nitrogenous compounds with better survival of goldfish.

Removal of Nitrogenous Compounds by Immobilized Mixed Microorganisms Including Photosynthetic Bacteria (광합성 세균을 포함한 고정화 복합미생물에 의한 질소성분 제거)

  • Cho, Kyoung Sook;Kim, Jeong Bo;Jeong, Soo Kyoung;Jeong, Hae Yoon;Cho, Jeong Sub;Kim, Joong Kyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.91-97
    • /
    • 2006
  • For efficient removal of nitrogenous compounds produced in recirculating aquaculture system, the N removal characteristics of immobilized mixed microorganisms were investigated at various mixing ratios of photosynthetic bacteria (PSB) immobilized in PVA beads or CTA cubes and ammonium utilizing bacteria (AUB) immobilized in PVA beads. On the optimal medium of AUB, the maxium gas production rate was obtained at the mixing ratio of 10:40 (PSB:AUB), and the gas production rate increased as the portion of AUB beads in the mixed beads increased. When the mixing ratios of PSB:AUB beads were 50:0, 40:10, 25:25 and 10:40, the final pHs were measured to be 6.29, 6.01, 5.69 and 5.13, respectively. On the optimal medium of PSB, however, the volume and the rate of gas production decreased remarkably as the portion of AUB beads in the mixed beads increased. The final pH was measured to be approximately 6.5, regardless of the mixing ratio. In the reactions by the mixed culture of PSB cubes and AUB beads, all results showed the same tendency of those by the mixed culture of PSB and AUB beads, but the volume and the rate of gas production decreased remarkably, even with 0.2ml of gas production in control. From all the results, the use of mixed PSB and AUB beads at the ratio of 10:40 seems to be efficient to remove nitrogenous compounds in wastewater from recirculating aquaculture system.

  • PDF

A Test of Relative Removal Properties of Various Offensive Odors by Zeolite

  • Adelodun, Adedeji A.;Vellingiri, Kowsalya;Jeon, Byong-Hun;Oh, Jong-Min;Kumar, Sandeep;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.1
    • /
    • pp.15-28
    • /
    • 2017
  • The adsorptive removal properties of synthetic A4 zeolite were investigated against a total of 16 offensive odors consisting of reduced sulfur compounds (RSCs), nitrogenous compounds (NCs), volatile fatty acids (VFAs), and phenols/indoles (PnI). Removal of these odors was measured using a laboratory-scale impinger-based adsorption setup containing 25 g of the zeolite bed (flow rate of $100mL\;min^{-1}$). The high est and lowest breakthrough (%) values were shown for PnIs and RSCs, respectively, and the maximum and minimum adsorption capacity (${\mu}g\;g^{-1}$) of the zeolite was observed for the RSCs (range of 0.77-3.4) and PnIs (0.06-0.104), respectively. As a result of sorptive removal by zeolite, a reduction in odor strength, measured as odor intensity (OI), was recorded from the minimum of approximately 0.7 OI units (indole [from 2.4 to 1.6]), skatole [2.2 to 1.4], and p-cresol [5.1 to 4.4]) to the maximum of approximately 4 OI units (methanethiol [11.4 to 7.5], n-valeric acid [10.4 to 6.5], i-butyric acid [7.9 to 4.4], and propionic acid [7.2 to 3.7]). Likewise, when removal was examined in terms of odor activity value (OAV), the extent of reduction was significant (i.e., 1000-fold) in the increasing order of amy acetate, i-butyric acid, phenol, propionic acid, and ammonia.

Evolution of Nitrogenous and Non-Structural Carbohydrate Compounds in Remaining Tissues Following Shoot Removal of Alfalfa (Medicago sativa L.) (알팔파(Medicago sativa L.)의 예취후 잔여기관내 질소화합물과 비구조성 탄수화물의 변화)

  • Kim, Tae Hwan;Kim, Byeong Ho;Ourry, Alain
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.13 no.1
    • /
    • pp.7-15
    • /
    • 1993
  • Nitrogenous and non structural carbohydrate compounds in the remaining tissues of 10 weeks old alfalfa (Medicago sativa L.) grown in hydroponic culture, were analysed during 24 days of regrowth following shoot removal. The dry weights of the remaining organs were not significantly changed for 10 days following shoot removal. Compared with uncut plants, defoliation drastically depressed root growth, in particular that of taproot. During 6 days of regrowth, nitrogen contents in all remaning organs significantly decreased. Nitrogen loss in this period was pronounced in root system. Nitrogen contents in each organ after 24 days of regrowth in defoliated plant were recovered completely or exceeded initial level. Amino acid-N was the most readily available form of nitrogen while protein-N was the largest storage pool. The tap root contained about 51.0% and 33.4%, respectively, of the total starch and total ethanol-soluble sugar contents. The starch content of tap roots initially exceeded 40.7 mg. plant$^{-1}$ (day 0), and then declined to the minimum level on day 14. This result clearly showed that the tap root is the major storage site for metabolizable nitrogen (protein-N and amino acid-N) and carbohydrate(starch), and that the degradation of these researves occur much actively in the early period of regrowth.

  • PDF

Effect of silver nanoparticles on the performance of riverbank filtration: Column study (강변여과에서의 은나노입자의 영향 : 실험실규모 컬럼 실험)

  • Lee, Donghyun;No, Jin-Hyeong;Kim, Hyun-Chul;Choi, Jae-Won;Choi, Il-Hwan;Maeng, Sungkyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.77-88
    • /
    • 2015
  • Soil column experiments were evaluated effects of silver nanoparticles (i.e., 0, 2.5, 5, and 10 mg/L) on the microbial viability which is strongly associated with the degradation of organic matter, pharmaceutically active compounds(PhACs) and biological oxidation of nitrogenous compounds during river bank filtration. The addition of silver nanoparticles resulted in almost no change in the aqueous matrix. However, the intact cell concentration decreased with addition of silver nanoparticles from 2.5 to 10 mg/L, which accounted for 76% to 82% reduction compared to that of control (silver nanoparticles free surface water). The decrease in adenosine triphosphate was more pronounced; thus, the number and active cells in aqueous phase were concurrently decreased with added silver nanoparticles. Based on the florescence excitation-emission matrix and liquid chromatograph - organic carbon detection analyses, it shows that the removal of protein-like substances was relatively higher than that of humic-like substances, and polysaccharide was substantially reduced. But the extent of those substances removed during soil passage was decreased with the increasing concentration of silver nanoparticles. The attenuation of ionic PhACs ranged from 55% to 80%, depending on the concentration of silver nanoparticles. The attenuation of neutral PhACs ranged between 72% and 77%, which was relatively lower than that observed for the ionic PhACs. The microbial viability was affected by silver nanoparticles, which also resulted in inhibition of nitrifiers.