• Title/Summary/Keyword: removal of microorganism

Search Result 199, Processing Time 0.021 seconds

A Review on Efficient Operation Technology of Compost Depot (퇴비사의 효율적인 운영기술에 대한 고찰)

  • Yang, Il-Seung;Ji, Min-Kyu;Jeon, Byong-Hun
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.345-356
    • /
    • 2017
  • The composting is a biological process that converts organic matter into useful resources such as fertilizers. It is a continuous transition of microbial communities to adapt changes in organic matter and environmental conditions (carbonation rate, temperature, humidity, oxygen supply, pH, etc.). Most of the composting plants are located in the proximity of the residential areas. It is a general scenario where government authorities receive complaints from the local residents due to release of odor from the composting, and has become a social problem in Korea. Identification of dominant microorganisms, understanding change in microbial communities and augmentation of specific microorganism for composting is vital to enhance the efficiency of composting, quality of the compost produced, and reduction of odor. In this paper, we suggest the optimum operation conditions and methods for compost depot to reduce odor generation. The selection of the appropriate microorganisms and their rapid increase in population are effective to promote composting. The optimal growth conditions of bacteria such as aeration (oxygen), temperature, and humidity were standardized to maximize composting through microbial degradation. The use of porous minerals and moisture control has significantly improved odor removal. Recent technologies to reduce odor from the composting environment and improved composting processes are also presented.

Studies on the screening and properties of Raw Starch Saccharifying Microorganism(II) - Purification and characterization of raw starch-digesting enzyme from Aspergillus sp. SN-871 - (생전분(生澱粉) 자화성(資化性) 미생물(微生物)의 분리(分離)와 성질(性質)에 관(關)한 연구(硏究)(II) - Aspergillus sp. SN-871이 생산하는 생전분 분해효소의 정제 및 특성 -)

  • Suh, Myung-Ja;Nho, Kyoung-Hee
    • The Korean Journal of Mycology
    • /
    • v.15 no.3
    • /
    • pp.175-182
    • /
    • 1987
  • A raw starch saccharifying enzyme from Aspergillus sp. SN-871 was purified by ammonium sulfate precipitation, DEAE-cellulose column chromatography, CM-Sephadex C-50 column chromatography and Sephadex G-75 gel filtration. The specific activity of purified enzyme was 18 fold and the yeild was 13.40%. The molecular weight of the purified enzyme was estimated as approximately 40,000 dalton by the method of Andrews gel filtration. The optimum pH and temperature for this enzyme were found to be 4 and $40^{\circ}C$, respectively and the stable range of pH was 2 to 5. The enzyme was themostable at below $60^{\circ}C$ and inactivated at $70^{\circ}C$. It showed a tendency to increase the enzyme activity under the presence of 0.01 M $BaCl_2$, but under 0.01 M$Pb(NO_3)_2$, $AgSO_4$, and $K_3Fe(CN)_6$ and citric acid etc. inhibited it completely. The substrate specifity of enzyme showed a tendency to increase the enzyme activity under addition of dextrin and glycogen, but under saccharose inhibited it. COD removal rate of Aspergillus sp. SN-871 was approximately 67 to 68%.

  • PDF

Development of Antibacterial Hood and Filter for Medical Powered Air Purifying Respirators (PAPR) (의료용 전동공기청정호흡기(PAPR)용 항균성 후드 및 필터 개발)

  • Eunjoo Koh;Nahyun Cho;Yong Taek Lee
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.398-408
    • /
    • 2023
  • This work developed a hood and filter for antibacterial protective clothing for medical powered air purifying respirators (PAPR) that can be used in medical settings and quarantine against infectious diseases such as Zika virus, Middle East respiratory syndrome (MERS), and coronavirus disease-19 (COVID-19). The hood material of the protective clothing was made of polypropylene spunlace nonwoven fabric (SFS) was used for withstand wind pressure and external physcial pressure. Forthermore, in order to reduce the user's risk of infection, phytoncide-based materials were used on the outer-surface of the hood to achieve a 99.9% antibacterial effect, and the inner-surface were treated with hydro-philic materials to improve absorbency by 25%. In addition to evaluating the artificial blood penetration resistance, dry mi-croorganism penetration resistance, wet bacteria penetration resistance, and bacteriophage penetration resistance required for medical protective clothing hoods, it received a passing evaluation of levels 2-6. Meanwhile, as a result of evaluating the performance of the antibacterial treated spunlace high efficiency particulate air (HEPA) filter, excellent antibacterial properties, dust removal rate, and differential pressure effect were confirmed. All performance evaluations were conducted by an accredited certification body in accordance with the medical PAPR certification standards.

Bioremediation of Oil-Contaminated Soil Using Rhizobacteria and Plants (근권세균과 식물을 이용한 유류 오염 토양의 생물복원)

  • Kim Ji-Young;Cho Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.3
    • /
    • pp.185-195
    • /
    • 2006
  • Phytoremediation is an economical and environmentally friendly bioremediation technique using plants which can increase the microbial population in soil. Unlike other pollutants such as heavy metals, poly-chlorinated biphenyl, trichloroethylene, perchloroethylene and so on, petroleum hydrocarbons are relatively easily degradable by soil microbes. For successful phytoremediation of soil contaminated with petroleum hydrocarbons, it is important to select plants with high removal efficiency through microbial degradation. In this study, we clarified the roles of plants and rhizobacteria and identified their species effective on phytore-mediation by reviewing the papers previously reported. Plants and rhizobacteria can degrade and remove the petroleum hydrocarbons directly and indirectly by stimulating each other's degradation activity. The preferred plant species are alfalfa, ryegrass, tall fescue, poplar, corn, etc. The microorganisms with a potential to degrade hydrocarbons mostly belong to Pseudomonas spp., Bacillus spp., and Alcaligenes spp. It has been reported that the elimination efficiency of hydrocarbons by soil microorganisms can be improved when plants were simultaneously applied. For more efficient restoration, it's necessary to understand the plant-rhizobacteria interaction and to select the suitable plant and microorganism species.

The Removal of Indoor Suspended Microorganisms of Eco-friendly Antimicrobial Copper Net Filter (친환경소재인 항균동망 필터의 실내 부유 미생물 제거 연구)

  • Kim, Dong-Woo;Je, Dong-Hyun;Ji, Keunho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.311-316
    • /
    • 2018
  • As the lives of people have improved, the demand for improved indoor air quality has increased. Various methods are used to remove biological air pollutants, such as UV/photocatalytic devices and ozone generators. However, these methods have disadvantages such as energy consumption, high corrosivity and toxicity. To overcome these disadvantages, an antibacterial copper filter was fabricated and its antimicrobial activity was then tested against two fungi (P. pinophilum, C. globosum) and one bacteria (S. aureus) Moreover, the ability to remove suspended microorganisms was tested step by step from the chamber stage to the air conditioning system. The results revealed 100% antimicrobial activity after 24 hours for the two fungi, while this value was 99.9% after 18 hours for the bacteria. Moreover, the antibacterial activity was higher when the chamber and air purifier were used than was obtained using a general antibacterial HEPA filter. Also, as a filter for system air conditioner, the antibacterial activity was lowered in offices and hospitals. In conclusion, the copper filter was found to have sufficient antibacterial activity for use as an antibacterial filter; however, further research on its preparation methods and materials is warranted.

A Study on Anaerobic Treatment and Energy Recovery Technology of Food Waste by Using Hybrid Anaerobic Reactor (Hybrid Anaerobic Reactor를 이용한 음식물쓰레기의 혐기성처리 및 에너지 회수에 관한 연구)

  • Yoon Young-Bong;Park Jin-Young;Ju Jin-Young;Kim Myung-Ho
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.1 s.55
    • /
    • pp.64-75
    • /
    • 2005
  • The total production of food waste was about 11,398ton/day('03) in Korea. Also, food waste was treated by landfill, incineration, reuse and anaerobic digestion. The method of food waste treatment depended primarily on landfill. However, the method of landfill causing social problems was prevented to treat food waste in the first of January 2005.12) Thus, anaerobic digestion is an important method to treat food waste because of possibility of energy recovery as methane gas. In this study, the possibility of food waste treatment containing high organic material and low pH in the one stage anaerobic reactor to save cost and time and energy recovery using $CH_{4}$ gas by the hybrid anaerobic reactor (HAR) was measured. The HAR was designed by combing the merits of the anaerobic filter (AF) to minimize the microorganism shock when food waste of very low pH was injected and up-flow anaerobic sludge blanket (UASB) to prevent from plugging and channeling phenomena by large suspended solids when semi solids were injected. Granule was packed in the section of HAR. The purpose of the BMP experiment was to measure the amount of methane generated when organic material was resolved under anaerobic conditions, to grasp bio resolution of organic material. Total accumulated methane production per VS amount was $0.471(m^{3}/\cal{kg}\;VS)$. So, the value was about $81.2\%$ of theoretical methane production which was $0.58(m^{3}/\cal{kg}\;VS)$ by elementary analysis and organic matter removal velocity (K) was $0.18(d^{-1})$. From these results, food waste was treated by anaerobic treatment. From this study, $CH_{4}$ generation from food waste (11,398 ton/day) could be estimated. By using an energy conversion factor of Braun's study, $5.97KWh/m^{3}\;CH4,\;60\%\;of\;CH_{4}$ gas generation, the amount of total energy producing food waste is to 6,727MWh/day. It could be confirmed that energy recovery using $CH_{4}$ gas was possible. Above these results, food waste containing organic matters of high concentration could be treated in HRT 30 days under an anaerobic condition, using the hybrid anaerobic reactor and reuse of $CH_{4}$ gas was possible.

Changes of Microbial Community Depending on Different Dissolved Oxygen in Biological Nitrogen Removal Process (생물학적 질소제거 공정에서 용존산소변화에 따른 미생물의 군집변화)

  • Park, Jong-Il;Lee, Tae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.939-947
    • /
    • 2008
  • PCR-DGGE method was applied to analyze changes of microbial community in simultaneous nitrification and denitrification (SND) bioreactor with various DO concentrations. In the analysis of eubacterial community, band profiles of DGGE were similar with 2 or 1 mg/L DO concentrations in the reactor. Experimental results led to 16 different bacteria being identified, including 5 dominant strains(3 strains of Uncultured Bacterium, 1 strains of Bacillus, 1 strains of Uncultured Bacteroidetes). DGGE results at 0.5 mg/L DO concentration led to 12 strains being identified, including 7 dominant strains(5 strains of Uncultured Bacterium, 2 strains of Zoogloea sp.). DGGE results at 0.1 mg/L DO concentration led to 11 strains being identified, including 3 dominant strains(1 strains of Uncultured Bacterium, 2 strains of Zoogloea sp.). In DGGE band profiles of $\beta$-AOB($\beta$-Ammonia Oxidizing Bacteria), only one band was observed. This band had 97% similarity with Nitrosomonas sp. done DNB Y20. This band was clearly observed at the 2, 1 and 0.5 mg/L DO concentrations, while the brightness of the band at 0.1 mg/L DO concentration was mostly dimmed. In DGGE band profiles of denitrification process, 5 bands(3 strains of Uncultured organism containing nirS, 2 strains of Uncultured organism containing nirK) were observed. Among those bands, the brightness of one band was gradually increased at the lower DO concentrations. This band has 86% identity with Uncultured organism clone eS1 cd1 nirS gene, partial cds. Based on this result, it could be concluded that Uncultured organism clone eS1 cd1 nirS gene, partial cds is a predominant microorganism in the denitrification process.

Treatment Characteristics of Soil Clothing Contact Oxidation Process using Bio-media (생물담체를 충진한 토양피복 산화접촉공정의 하수처리특성)

  • Kim, Hong-Jae;Kang, Jae-Hee;Lee, Ki-Seok;Motoki, Kubo;Kang, Chang-Min;Chung, Seon-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.414-419
    • /
    • 2005
  • This study was performed to compare the treatment efficiencies of two media, newly developed Bio-rock and conventional gravel, in soil clothing contact oxidation process. The composition of synthetic wastewater were $COD_{Cr}$ $150{\sim}370\;mg/L$, $BOD_5$ $150{\sim}270\;mg/L$, T-N $20{\sim}60\;mg/L$, T-P $5{\sim}25\;mg/L$, pH 7 and 2 mL/L of trace element solution. The experiment using two reactors was comparatively conducted for the flow rate of 40 L/d for 13 months, respectively. Initially Bio-rock reactor was increased to pH 12 due to $Ca(OH)_2$ with hydration of cement, but gravel reactor was dropped to pH 4 due to the degradation of organic material and nitrification. This significant pH variation deteriorated the growth and activity of microorganism. But the high pH of Bio-rock seems favorite to ammonia stripping and precipitation of phosphate. Such pH variation of Bio-rock and gravel reactors were finally stabilized to pH 8 and pH 6, respectively. The removal efficiencies of organic compounds from Bio-rock reactor were 96% of $COD_{Cr}$, 98% of $BOD_5$, 80% of T-N and 85% of T-P which stably coping against variation of influent concentration. But those of gravel reactor were 96% of $COD_{Cr}$, 96% of $BOD_5$, 42% of T-N and 40% of T-P, respectively. The Bio-rock was 2 times higher than T-N and T-P in treatment efficiency. And electron-microscopic examination showed that Bio-rock was more favorable to microbial adherence than gravel. The microbial populations were $5.2{\times}10^6\;CFU/mL$ of Bio-rock reactor compared to $2.6{\times}10^6\;CFU/mL$ in gravel reactor. In result Bio-rock was favor to microbial adherence and high treatment efficiency in spite of variation of influent concentration which had the advantages in saving running time and reducing site requirement.

Performance Evaluation of Bio-Membrane Hybrid Process for Treatment of Food Waste Leachate (음식물 침출수 청정화를 위한 파일롯 규모의 생물-분리막 복합공정의 성능 평가 연구)

  • Lee, Myung-Gu;Park, Chul-Hwan;Lee, Do-Hoon;Kim, Tak-Hyun;Lee, Byung-Hwan;Lee, Jin-Won;Kim, Sang-Yong
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.90-95
    • /
    • 2008
  • In this study, a combined process of sequential anaerobic-aerobic digestion (SAAD), fluidized-bed bioreactor (FBBR), and ultrafiltration (UF) for the treatment of small scale food waste leachate was developed and evaluated. The SAAD process was tested for performance and stability by subjecting leachate from food waste to a two-phase anaerobic digestion. The main process used FBBR composed of aerators for oxygen supply and fluidization, three 5 ton reaction chambers containing an aerobic mesophilic microorganism immobilized in PE (polyethylene), and a sedimentation chamber. The HRTs (hydraulic retention time) of the combined SAAD-FBBR-UF process were 30, 7, and 1 day, and the operation temperature was set to the optimal one for microbial growth. The pilot process maintained its performance even when the CODcr of input leachate fluctuated largely. During the operation, average CODcr, TKN, TP, and salt of the effluent were 1,207mg/L, 100mg/L, 50 mg/L, and 0.01 %, which corresponded to the removal efficiencies of 99.4%, 98.6%, 89.6%, and 98.5%, respectively. These results show that the developed process is able to manage high concentration leachate from food waste and remove CODcr, TKN, TP, and salt effectively.