• Title/Summary/Keyword: removal of column

Search Result 544, Processing Time 0.027 seconds

The Study on Increase the Decomposition of Organics and Organic Removal Rates by using Sulfate in Sanitary Landfills (황산염을 이용한 매립지 유기물분해 촉진과 분해속도에 관한 연구)

  • Kim, Jeong Gwon;Yun, Tae Gyeong;Kim, Ga Ya
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.69-77
    • /
    • 2004
  • In this study, sulfate reduction reaction was used to increase the decomposition of organics, which is the most critical factor for the stabilization of a landfill site. Composite of sewage sludge, papers, and incineration ashes was used in the column. The experimental results indicated that out of 10 reactors, the reactors 3, 4, 8. and 9 showed higher organics (i.e., TOC) removal rate than that in the absence of sulfate. The organics removal rates (K) in R3 and R9 were 8.65e$\^$-4/d and 3.82e$\^$-4//d, respectively. The times to reach 10% of initial concentrations in R3 and R9 was 7.3 and 16.5 years, respectively, showing faster organics decomposition rates in these reactors.

Evaluation of Soil Flushing Column Test for Oil-contaminated Soil Treatment (유류오염토양 처리를 위한 컬럼식 토양세정기술 평가)

  • Kang, Hui-Cheon;Han, Byeong-Gi;Kim, Joung-Dae;Seo, Seung-Won;Shin, Chul-Ho;Park, Joon-Seok
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.302-307
    • /
    • 2017
  • This study was conducted to evaluate the feasibility of in situ soil flushing for TPH-contaminated soil remediation with column test. The soil texture of the soil was sand and the initial TPH concentration was $9,369mg\; kg^{-1}$. 0.1% Tween-80 was selected as surfactant solution. And the acrylic and the glass syringe columns were used as reactors. In the acrylic column test, 35% of the initial TPH was removed in 1 PV of flushing and approximately 40% in 5 PV and finally 7 PV showed about 60%. The glass column test showed 3 ~ 12% higher removal efficiency than that of acrylic test until 5 PV of flushing. However, there was no difference in TPH removal efficiency when 7 PV of surfactant was finally flushed. Both of alum only and alum+polymer mixed surfactants showed also the best coagulation efficiency in $150mg\;L^{-1}$ of concentraion. When Tween 80 was newly dissolved in 0.1% to the recovered solution after the coagulation treatment, the removal efficiency was increased from 32.0% to 41.0% in comparison to the new 0.1% Tween 80 solution without reuse by coagulation treatment.

Removal of Heavy Metals from Aqueous Solution by a Column Packed with Peat-Humin (Peat-Humin 충전 칼럼을 이용한 수용액 중의 중금속 제거)

  • Shin, Hyun-Snag;Lee, Chang-Hoon;Lee, Yo-Snag;Kang, Ki-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.535-541
    • /
    • 2005
  • Peat humin(p-Humin) extracted from Canadian Sphagnum peat moss was packed in a column and removal of heavy metal ions such as Cd, Cu and Pb from aqueous solution under flow conditions was studied. The metal ions were removed not only from single-element solutions but also from a multi-metal solution. Column kinetics for metal removal were described by the Thomas model. For single-component metal solutions, the maximum adsorption capacities of the p-Humin for Pb, Cu and Cd were 138.8, 44.66 and 41.61 mg/g, respectively. The results of multi-component competitive adsorption showed that adsorption affinity was in the order of Pb $\gg$ Cu > Cd. The adsorbed metal ions were easily deserted from the p-Humin with 0.05 N $HNO_3$ solution. It is apparent that 95% of the heavy metal ions were recovered from the saturated column. This investigation provides possibility to clean up heavy-metal contaminated waste waters by using the natural biomass, p-Humin as an environmentally friendly and cost-effective new biosorbents.

Adsorption characteristics of Amitrol, Nonylphenol, Bisphenol-A with GACs (흡착특성이 다른 내분비계 장애물질 3종, Amitrol, Nonylphenol, Bisphenol-A의 GACs에서의 흡착 특성)

  • Choi, Keun-Joo;Kim, Sang-Goo;Kwon, Ki-Won;Ji, Yong-dae;Kim, Seung-Hyun;Kim, Chang-Won
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.256-264
    • /
    • 2004
  • Adsorption characteristics of three endocrine disruptors, amitrol, nonylphenol, and bisphenol-A, were evaluated depending on the type and service duration of activated carbon (AC). Bituminous coal-, wood-, and coconut-based coals were tested. Bituminous coal-based AC (BCAC) had the greatest sorption capacity for the three chemicals tested, followed by wood-based AC (WAC) for nonylphenol and coconut palm-based AC (CAC) for bisphenol-A. During the column test, amitrol removal efficiency increased over time, indicating that hydrophilic endocrine disruptors are biodegraded in the AC column. Removal efficiencies of hydrophobic compounds such as nonylphenol and bisphenol-A decreased over time since the main removal mechanism was adsorption. The order of the amitrol removal was: BCAC-5.9 yr, CAC-3.l yr > BCAC-2.2 yr > BCAC-virgin > CAC-virgin > WAC-virgin > WAC-3.l yr. In general, used AC had greater removals than virgin AC. The order of the bisphenol-A removal was: CAC-virgin > BCAC-2.2 yr > CAC-3.l yr > WAC-virgin > BCAC-5.9 yr > WAC-3.l yr. The order of the nonylphenol removal was: BCAC-virgin > WAC-virgin > CAC-3.1 yr, WAC-3.1yr> BCAC-2.2 yr > BCAC-5.9 yr > CAC-3.1 yr. Bituminous coal AC performed the best over time. Endocrine disruptors such as these three compounds appear to be removed effectively by activated carbon through biodegradation and adsorption. Wood and coal based among the virgin ACs and 3.1 years used wood base among the used ACs appeared the lowest carbon usage rate(CUR) for nonylphenol removal by prediction model. Virgin and used coconut base ACs except BCAC had the lowest CUR for removal Bisphenol-A. Biodegradation of nonylphenol and Bisphenol-A did not occurred during the 9,800 bed volume experiment period. BCAC had the highest biodegradation capacity of 46% for amitrol among virgin ACs and the used coal based ACs had 33-44% higher biodegradation capacity than virgin's for amitrol so biodegradation is the effective removal technology for hydrophilic material such as amitrol.

Isolation and Identification of Anticancer Compounds from Eucommia ulmoides Leaves (두충잎의 항암성분 분리 및 동정)

  • 김종배;박정륭;전정례;차명화
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.4
    • /
    • pp.732-738
    • /
    • 2001
  • This study was attempted to isolate and identify the anticancer compounds from Eucommia ulmoides leaves using a human colon cancer cell line HCT-116. The petroleum ether extracts with anticancer activity was chromatographed on silica gel TLC and finally anticancer compounds was purified by HPLC. Their chemical structures were roughly elucidate by UV-VIS absorption spectral data HPLC elution pattern and FAM/MS spectroscopy. From this study these compounds were suspected to be pheophytin a formed by the removal of $Mg^{2+}$ from chlorophyll a and pyropheophytina formed by the removal of acetate group from pheophytin a respectively. To confirm the anticancer effects against HCT-116 cancer cell petroleum ether extract fractions of column chromatography and fractions separated on TLC were tested. All samples tested including the extract of petroleum ether fractions of column chromatograph and three bands (0.13,0.19,0.25) of TLC appeared to inhibit the growth of HCT-116 cancer cell however especially 0.19 and 0.25 fractions separated on TLC plate revealed the strongest effect. These results suggest that chlorophyll derivatives in Eucommia ulmoides may be potential anticancer agents against a human colon cancer cell HCT-116.

  • PDF

A Proposition for the Removal of Algae and Phosphorus from River Water Using Multi-Purpose filtration pond (다목적 여과저류지를 이용한 하천수의 조류와 인 제거방안 제안)

  • Choi, Hong-Gyu;Jeong, Il-Hwa;Bae, Gha-Ram;Park, Jae-Young;Lee, Jong-Jin;Kim, Yong-Woon;Jung, Kwan-Sue;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.7
    • /
    • pp.525-531
    • /
    • 2013
  • In an effort to find a solution to the eutrophication of major Korean rivers, a method to utilize multi-purpose filtration pond was investigated. As literature showed that oyster shell is known to be the most adequate for the removal of dissolved phosphorus in Korean rivers, batch and column experiments were performed using oyster shell as an adsorbent in this study. The results of the batch experiment showed that the removal of dissolved phosphorus from river water through adsorption as a way of preventing algal growth was not practical. The results obtained from the column experiment, however, suggested that oyster shell may be utilized as an adsorbent under limited conditions. Based on the results of the experiments a methodology was proposed to remove algae from river water through the use of multi-purpose filtration pond. This method involves mechanically removing the accumulated algae cake from the surface of the artificial stream in the pond towards the condensing part located at the lower reach of the stream, where particles gather before the final removal. In addition, employment of oyster shell as an adsorbent in the condensing part allows prevention of phosphorus released from the dead algae re-entering the river water.

Removal Characteristics of Geosmin in a Slow Sand Filteration Process (완속 모래여과 공정에서의 Geosmin 제거 특성)

  • Son, Hee-Jong;Yoom, Hoon-Sik;Jang, Seong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.8
    • /
    • pp.754-760
    • /
    • 2010
  • Geosmin removal by biodegradation was investigated in lab-scale slow sand filtration column with different empty bed contact times (EBCTs) and water temperature. Schmutzdecke layer was built up after 30 days operation and biomass and activity were $4.5{\times}10^6\;CFU/g$ and $3.42\;mg{\cdot}C/m^3{\cdot}hr$, respectively. The attached bio-film microorganisms in schmutzdecke layer were isolated and identified. The dominant species was Pseudomonas sp. that had occupied 56%. Removal efficiencies of dissolved organic carbon (DOC) and geosmin were 27% and 95% after 30 days operation. In lab-scale slow sand filtration column, geosmin and DOC removal efficiencies were 62% and 10% at $5^{\circ}C$, respectively. And increasing water temperature ($15^{\circ}C$ and $25^{\circ}C$) increased the geosmin and DOC removal efficiencies (88~100% and 25~42%) in lab-scale slow sand filtration column. Geosmin and DOC biodegradation rates (k) in the schmutzdecke layer (in the upper 5 cm filter bed) were $1.842{\sim}15.965\;hr^{-1}$1 and $0.253{\sim}1.123\;hr^{-1}$, respectively. It were about 18~32 times and 20~51 times of the rates in the deeper filter bed (5~60 cm).

Removal Characteristics of Ethyl Acetate and 2-Butanol by a Biofilter Packed with Jeju Scoria

  • KAM SANG-KYU;KANG KYUNG-HO;LEE MIN-GYU
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.977-983
    • /
    • 2005
  • The removal characteristics of ethyl acetate and 2-butanol were investigated in a bench-scale down-flow biofilter packed with Jeju scoria medium. Various inlet concentrations and gas flow rates were tested. The adaptation times of microorganisms to the change of the influent concentration of ethyl acetate and 2-butanol gas were found to be about 3 days. At the inlet concentration of 300 ppmv and empty bed contact time (EBCT) of 15 see, the removal efficiencies of the biofilter for ethyl acetate and 2-butanol were above $99.9\%$. The maximum removal capacity of the biofilter for ethyl acetate was $316-318\;g/m^3/h$ and that for 2-butanol was $245-251\;g/m^3/h$. Overall, the removal capacity of the biofilter for ethyl acetate was $50-70\;g/m^3/h$ larger than that for 2-butanol. During the operation of 65 days, the pressure drop through the biofilter column was maintained below $13\;mmH_{2}O/m$. Although the pH in the drain water decreased from 7.2 to 5.0, the pH drop did not affect the removal of the gases. From the above results, the biofilter using Jeju scoria as a packing material seemed to very effectively treat waste gases such as ethyl acetate and 2-butanol.

Performance and Operation of Biological Activated Carbon (생물활성탄접촉조의 성능과 조작)

  • Lee, Gangchoon;Yoon, Taekyung
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.83-90
    • /
    • 2006
  • Performance and operation of BAC in ozone-BAC advanced water treatment process were investigated using the pilot scale test plant built in D water purification plant. The performance was evaluated by the removal efficiencies of DOC, BDOC, ammonia nitrogen and THMs. The effect of EBCT on DOC removal was experimented for an effective operating condition, and the amount of attached biofilm was analyzed in various water temperatures and position of BAC. Two removal mechanisms, adsorption and biological decomposition by attached biofilm, were predominant to decrease the concentration of various contaminants. DOC was removed 40%, and the removal rate was decreased in winter time due to the lowered activity of attached biofilm. BDOC was effectively removed. THMs and ammonia nitrogen were mainly removed not in ozonation process but in BAC. Water temperature deeply influenced in removal efficiency of ammonia nitrogen. The amount of attached biofilm depended on water temperature and height of packed activated carbon column. Considering DOC removal efficiency and design EBCT of commercial BAC plant, the proper EBCT was 12.5 minutes.

Estimation of the Removal Capacity for Cadmium and Calculation of Minimum Reaction Time of BOF Slag (제강슬래그의 카드뮴 제거능 평가 및 필요반응시간 결정)

  • Lee, Gwang-Hun;Kim, Eun-Hyup;Park, Jun-Boum;Oh, Myoung-Hak
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.5-12
    • /
    • 2011
  • This study was focused on the reactivity of furnace slag against cadmium to design the vertical drain method with reactive column for improving contaminated sea shore sediment. The kinetic sorption test was performed by changing the initial concentration and pH. Using pseudo-second-order model, the reactivity of furnace slag was quantitatively analyzed. Equilibrium removal amount ($q_e$) of furnace slag increased and rate constant ($k_2$) decreased with the increase of initial cadmium concentration. With the increase of pH, the equilibrium removal amount ($q_e$) and rate constant ($k_2$) increased in the same initial concentration. Required retention time was related to the inverse of the product of the equilibrium removal amount ($q_e$) multiplied by rate constant ($k_2$). The required retention time could be used to design the length of reactive column.