• Title/Summary/Keyword: removal of NH$_3$-N

Search Result 367, Processing Time 0.031 seconds

Ammonium Adsorption Property of Acrylic Acid and Styren Grafting Polypropylene Non-Woven Fabric Synthesized by Photo-induced Polymerization (광조사 중합법에 의해 합성된 PP-g-AA와 PP-g-St 부직포의 암모니아성 질소 흡착특성 비교)

  • Park, Hyun-Ju;Na, Choon-Ki
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1255-1263
    • /
    • 2008
  • The efficiency of PP-g-AA and PP-g-St nonwoven fabric synthesized by photoinduced polymerization as an adsorbent for removal $NH_3-N$ from waste water was evaluated. The results evidently indicate that the adsorption capacities of $NH_3-N$ onto PP-g-AA nonwoven fabric were extremely superior to those onto sulfonated PP-g-St nonwoven fabric, PK and zeolite. PP-g-AA nonwoven fabric showed the maximum adsorption capacity of $NH_3-N$ at the degree of grafting of 80 wt.%. The adsorption behaviour of $NH_3-N$ onto PP-g-AA and sulfonated PP-g-St nonwoven fabric was controlled by an ion exchange reaction, and tended to be similar to both trends of Langmiur and Freundlish isotherm. Futhermore, PP-g-AA non-woven fabric could be regenerated more than 5 times by a simple washing with 0.1N HCl with no decrease of adsorption capacity and no degradation of physical properties. Also sulfonated PP-g-St nonwoven fabric could be regenerated by washing with 0.1N ${H_2}{O_4}$. However, their regeneration efficiency was significantly low because grafting layer acted as functional radical for adsorption was continuously desquamated in the adsorption or regeneration processes, which resulted in decrease of adsorption capacity and weight of adsorbent. All results obtained from this study indicate that the $NH_3-N$ removal capacity of PP-g-AA non-woven fabric was extremely superior to those of PP-g-St non-woven fabric, PK and zeolite.

A Study on the Growth Characteristics of Commercially Developed Nitrifying Bacteria and its Application to Activated Sludge Process (상업용 질산화 박테리아의 성장특성과 활성슬러지 공정에서의 적용 방법에 따른 연구)

  • Whang, Gyu-Dae;Lee, Bong-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.595-604
    • /
    • 2006
  • The growth characteristics of Commercially Developed Nitrifying Bacteria (CDNB) were studied in laboratoryscale. CDNB, a pure, artificially isolated bacterium, was cultivated to produce Cultivated Nitrifying Bacterium Group (CNBG). The average ammonia removal rate of CDNB was 0.0234g $NH_4^+-N/g$ MLSS/hr. CNBG was produced in the batch reactor and Specific Nitrification Rate (SNR) was determined at 0.0107g $NH_4^+-N/g$ MLSS/hr. The SNR of CNBG was lower than the SNR of CDNB because the diverse and multi-cultured microbial growth took place during cultivation. The effect of the temperatures and the mixing ratios of sewage and culture solution on the SNR of CNBG was studied. The SNR of CNBG, 0.0107g $NH_4^+-N/g$ MLSS/hr at $27^{\circ}C$, decreased to 0.0048g $NH_4^+-N/g$ MLSS/hr at $15^{\circ}C$, and temperature coefficient (${\Theta}$) was calculated to be 1.07. With the varied sewage mixing ratios, the SNR of CNBG remained unchanged. Activated sludge reactors maintaining an MLSS of 2,000mg/L at HRT of 4 h were operated under conditions in which dosage of Concentrated CNBG Solution (CCNBGS, 10,000mg MLSS/L) and application method of CNBG were varied. The reactor with 20mL of CCNBGS took shorter time to oxidize $NH_4^+-N$ reaching 1mg/L than the reactor with 5mL of CCNBGS showing that higher dosages were associated with greater mass removal of $NH_4^+-N$. However, the total removal was not great. In terms of different methods of CNBG application, reactor seeded with 20mL of CCNBGS took 3days to reach 1mg/L of effluent ammonia concentration while reactor dosed with 20% (v/v) CNBG implanted media took 2days. Both the control reactor and the reactor dosed with 20% (v/v) media only did not reach 1mg $NH_4^+-N/L$ after operating 18days. The reactor with CNBG implanted media had the highest $NH_4^+-N$ removal rate because of maintaining high concentration of Nitrifying Oxidizing Bacteria (NOM), and is regarded as an appropriate method for the activated sludge process.

Optimization for Removal of Nitrogen Using Non-consumable Anode Electrodes (비소모성 Anode(산화전극)을 이용한 질소 제거 최적화)

  • Hyunsang, Kim;Younghee, Kim
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.309-315
    • /
    • 2022
  • Research was conducted to derive the optimal operation conditions and the optimal cathode for using a DSA electrode as an anode to minimize electrode consumption during the removal of nitrogen from wastewater by the electro-chemical method. Of the various electrodes tested as cathodes, brass was determined to be the optimal electrode. It had the highest NO3-N removal rate and the lowest concentration of residual NH3-N, a by-product when Cl is present in the solution. Investigating the effect of current density found that when the initial concentration of NO3-N was 50 mg L-1, the optimal current density was 15 mA cm-2. In addition, current densities above 15 mA cm-2 did not significantly affect the NO3-N removal rate. The effect of electrolytes on removing NO3-N and minimizing NH3-N was investigated by using Na2SO4 and NaCl as electrolytes and varying the reaction times. When Na2SO4 and NaCl are mixed at a ratio of 1.0 g L-1 to 0.5 g L-1 and reacted for 90 min at a current density of 15 mA cm-2 and an initial NO3-N concentration of 50 mg L-1, the removal rate of NO3-N was about 48% and there was no residual NH3-N. On the other hand, when using only 1.5 g L-1 of NaCl as an electrolyte, the removal rate of NO3-N was the highest at about 55% and there was no residual NH3-N.

A study on the small sewerage system using SBR process (SBR을 이용한 소규모 오수처리시설에 관한 연구)

  • 박민정;김동석
    • Journal of Environmental Science International
    • /
    • v.12 no.4
    • /
    • pp.427-437
    • /
    • 2003
  • An evaluation of the application of SBR and biofilm en small sewerage system was conducted. A newly developed small sewerage system, using SBR, was successfully applied to the nutrient treatment using municipal wastewater. The system was consisted of 6 compartments. Two systems, with SBR (A type) or without SBR (B type), were compared by several parameters (COD, SS, T-N, NH$_4$$\^$+/-N, NO$_3$$\^$-/-N, NO$_2$$\^$ -/-N, alkalinity, pH, DO) in all experimental periods. Also, the time variation of several parameters (DO, pH, NH$_4$$\^$+/-N, NO$_3$$\^$-/-N NO$_2$$\^$-/-N) was examined in a SBR applied sewerage system. T-N removal efficiency of B type Was higher than that Of A type by the effect of nitrification and denitrification even though the COD removal efficiencies were similar. In aeration stage, the pH was decreased from 6.4 to 6.3 within 1 h and increased to 6.65 at the end of aerobic stage, and pH was decreased to 6.2 in non-aeration stage, and these phenomena were explained. The effects of nitrification and denitrification were compared in A type and B type sewerage system, and the typical nitrification and denitrification were observed in B type sewerage system.

Treatment of produced water in a floating carrier bioreactor

  • Ezechi, Ezerie Henry;Sapari, Nasiman;Menyechi, Ezerie Jane;Ude, Clement M.;Olisa, Emmanuel
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.210-215
    • /
    • 2017
  • Produced water is the largest wastestream of oil and gas exploration. It consists of various organic and inorganic compounds that hinder its beneficial use. This study compared the treatment of produced water in a batch suspended and biofilm activated sludge process. The biofilm carrier material was made from Gardenia Carinata shell. COD, $NH_4{^+}-N$ and $NO_3-N$ removal was monitored in both the suspended (control) and floating carrier bioreactors. The results show a rapid reduction of produced water constituents in the floating carrier bioreactor. COD, $NH_4{^+}-N$ and $NO_3-N$ removal was in the range of 99%, 98% and 97% for the floating carrier bioreactor whereas it was 88%, 84% and 83% for the control bioreactor. The rapid reduction of COD, $NH_4{^+}-N$ and $NO_3-N$ clearly indicate that the floating carrier materials served as an attached growth medium for microorganisms, improved the breakdown of produced water constituents and reduced inhibition of microbial metabolic activities.

Nitrogen and Phosphorus Removal of Municipal Wastewater with Temperature in CNR Process (섬모상담체를 이용한 혐기, 무산소, 호기공정(CNR공법)의 온도변화에 따른 하수의 질소, 인의 제거특성)

  • 김영규;양익배;김인배;이영준
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.112-118
    • /
    • 2001
  • The aim of this study was to evaluate on the removal effect of total nitrogen and phosphorus in municipal wastewater with temperature change from 1$0^{\circ}C$ to 24$^{\circ}C$ in CNR(Cilia Nutrient Removal) process. CNR process is the process combining $A^2$/O process with cilium media of H2L company. The removal efficiencies for T-N were found to be 57.9% at 1$0^{\circ}C$ below, 53.7% at 10-2$0^{\circ}C$, 52.2%at 20-24$^{\circ}C$ and 44.4% over 24$^{\circ}C$ respectively. The removal efficiencies for T-P were 53.3% at 1$0^{\circ}C$ below, 59.1% at 10-2$0^{\circ}C$, 72.4% at 20-24$^{\circ}C$ and 50.0% over 24$^{\circ}C$ respectively. The specific nitrification rate (kg NH$_3$-N/kg MLSS.d) of Oxic basin was 0.088 and 0.053 at 1$0^{\circ}C$ below, 0.077 at 10-2$0^{\circ}C$, 0.097 at 20-24$^{\circ}C$ and 0.088 over 24$^{\circ}C$ respectively. The specific denitrification rate (kg NH$_3$-N/kg MLSS.d) in anaerobic and anoxic was 0.013, 0.008 respectively.

  • PDF

Development of a System to Treat Industrial Wastewater with High Carbonaceous and Nitrogenous Materials (고농도(高濃度) 유기물(有機物) 및 질소(窒素)를 함유(含有)한 산업폐수처리(産業廢水處理) 시스템 개발(開發))

  • Lee, Yong Woon;Lee, Byonghi;Chung, Seon Yong;Jung, Su Jung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.67-75
    • /
    • 1998
  • The purpose of this study is to develop a system for treating industrial wastewater with high carbonaceous and nitrogenous materials. To investigate the potential of using this system, a number of experiments are conducted for about 7 months with the varieties of COD and $NH_3-N$ concentrations, and hydraulic retention time. In the system, 1,500mg/L of COD is remover over 95% in a retention time as low as 9 hours, and the $NH_3-N$ removal efficience is nearly 100% with 90mg/L of $NH_3-N$ in the influent. These results illustrate that the system can effectively be used to treat industrial wastewater containing high concentration of COD and $NH_3-N$.

  • PDF

Simultaneous Removal of Nitrogen and Phosphorus by Rotating Biological Activated Carbon Process (회전생물활성탄[RBAC] 공정을 이용한 질소.인의 동시 제거)

  • Nam, Beom-Sik;Lee, Yeong-Ho;Jo, Mu-Hwan
    • KSBB Journal
    • /
    • v.14 no.5
    • /
    • pp.606-610
    • /
    • 1999
  • The purpose of this study was to develop and evaluate rotating biological activated carbon(RBAC) process for nitrogen and phosphorus removal with increasing loading rate. The removal efficiency of $NH_4^+$-N was observed to be higher than 96.5% at all runs, and the relative stable levels of effluent $NH_4^+$-N, $NO_2^-$-N, $NO_3^-$-N could be maintained. The removal efficiency of T-N was observed to be higher than 90%, except RUN 1. The T-P removal efficiency was kept between 32.7% and 49.8%, and the amount of biomass was kept between 269 mg/g support and 473 mg/g support with varying loading rate.

  • PDF

Effects of media weight and pre-ozonation on the biodegradability enhancement in biological fluidized bed (생물활성탄 유동상법에서 충전량과 전오존처리가 생물처리효율에 미치는 영향)

  • 우달식;곽필재;남상호
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.1
    • /
    • pp.69-75
    • /
    • 1997
  • Biological drinking water treatment is widely used in Europe for the removal of ammonia nitrogen and organics. During the last 16 years, the deterioration of the quality of surface waters used to produce drinking water has resulted in the widespread use of ozone-biological treatment in Korea. This study were conducted to determine the effect of media weight and preozonation on the biodegradability enhancement in biological fluidized bed(BFB) using Han river water. When the carbon weight was increased, $NH_{3}-N$ and DOC removal increased, but turbidity and SS removal decreased. To remove turbidity and SS, the bed depth in 40% expansion rate/total bed depth was very important. Preozonation of raw water was not effective in $NH_{3}-N$, but increased in biodegradable organic fraction about 10-30% with 0.425-0.85 mg $O_{3}/mg$ DOC.

  • PDF

Investigation of Operating Parameters on UCT Process for the Purpose of Nitrogen Removal Using Computer Simulation (하수의 질소제거시 컴퓨터 시뮬레이션을 이용한 UCT(University of Cape Town) 공정의 운영인자 검토)

  • 김병군;서인석;이해군;김창원
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.2
    • /
    • pp.66-75
    • /
    • 1998
  • The computer simulation model was used to forecast the concentrations of COD$_{cr}$, NH$_{4}$$^{+}$-N and NO$_{3}$$^{-}$-N in each reactors. In the biological wastewater treatment system, the computer simulation model was used to observe the behavior of pollutants especially. In this research, effect of SRT, feeding pattern and recirculation rate on UCT(University of Cape Town) process was evaluated by computer simulation model. T-N removal was affected to the SRT. SRT for effective T-N removal was 15 days or longer. Feeding pattern in UCT process was affected to the T-N removal. Feeding pattern which 100% loading to the first reactor was most effective for T-N removal. The effect of recirculation rate was clear for T-N removal. The recirculation from anoxic reactor to anaerobic reactor was not need but the recirculation from oxic reactor to anoxic reactor was need. In aspect of nitrogen removal efficiency, A/O process was higher than UCT process.

  • PDF