• Title/Summary/Keyword: removal efficiency for nitrate

Search Result 124, Processing Time 0.024 seconds

Isolation and Characterization of Ammonia-removing Bacteria from a Food-wastewater Treatment Facility (식품 폐수 처리 시설에서 암모니아성 악취제거 세균의 분리 및 특성 분석)

  • Oh, Kyoung-Hee;Choi, In-Hak;Cho, Young-Cheol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.653-658
    • /
    • 2008
  • The bacteria responsible for the reduction of ammonia concentration in a food-wastewater treatment facility were isolated and their characteristics were analyzed. The isolated bacteria were closely related to the bacteria belonging to genus Citrobacter, Enterobacter, Buttiauxella, Shigella, and Aeromonas, which were found in gut of animals, indicating the isolated bacteria may come from the butchery-byproduct of pigs which is the main component of wastewater. When we monitored the concentration of nitrite and nitrate in the process, it was relatively constant, indicating the isolated bacteria reduce ammonia concentration through ammonia assimilation. Based on the removal efficiency of ammonia by the isolated bacteria, we concluded that they play a role in the reduction of odorous compounds.

Water Treatment and Oxygen Transfer by Rotating Biological Contactor in Pilot-Scale Recirculating Aquaculture System (Pilot-scale 순환여과식 양식장에서 회전원판 반응기의 순환수 처리 및 산소전달)

  • Suh Kuen Hack;Kim Byong Jin;Lee Jung Hoon;Kim Yong Ha;Lee Seok Hee;Kim Sung Koo;Jo Jea Yoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.5
    • /
    • pp.469-475
    • /
    • 2002
  • The rotating biological contactor (RBC) was tested for treatment of aquacultural water in a pilot-scale recirculating aquaculture system. Performance of RBC on the treatment of nitrogen source such as total ammonia nitrogen (TAN), nitrite nitrogen and nitrate nitrogen and chemical oxygen demand (CODcr.) was evaluated. A system was stocked with nile tilapia at an initial rearing densities of $5\%$ and $7\%$ over 30 days. As increasing rearing density from $5\%$ to $7\%$, the TAN removal rates was increased from $39.4 g/m^3{\cdot}day$ to $86.0 g/m^3{\cdot}day$. But TAN removal efficiency was decreased from $24.5\%$ to $16.0\%$. The removal rate of $COD_Cr$ was higher than TAN. The RBC as an aerator was also evaluated for increasing dissolved oxygen concentration. For $5\%$ and $7\%$ of rearing density, the average aeration rate were $280 g/m^3{\cdot}day$ and $255 g/m^3{\cdot}day$, respectively.

Effect of Nitrogen Compounds and Organic Carbon Concentrations on $N_2O$ Emission during Denitrification (탈질에서 질소성분 및 유기탄소 농도가 $N_2O$ 배출에 미치는 영향)

  • Kim, Dong-Jin;Kim, Heon-Ki;Kim, Yu-Ri
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.134-141
    • /
    • 2011
  • The effects of the compounds and concentrations of nitrogenous electron acceptor, the ratio of electron donor/electron acceptor (C/N), and the complexity of electron donor on the emission of $N_2O$ during wastewater denitrification were quantitatively investigated in this study. The higher ${NO_3}^-$ and ${NO_2}^-$ concentrations, the more $N_2O$ emission was observed. ${NO_2}^-$ has strong effect on $N_2O$ emission as it emitted morc $N_2O$ than ${NO_3}^-$, 50 mg/L of ${NO_2}^-$-N gave the highest conversion (9.3%) and yield (9.8%) of $N_2O$ while ${NO_3}^-$-N (50 mg/L) gave 5.6% conversion and 11.0% yield. Lower C/N ratio decreases nitrogen removal efficiency, but it increases the conversion of $N_2O$ because of the incomplete denitrification by the limited organic carbon. When real domestic wastewater is used as the electron donor of the denitrification, $N_2O$ emission is reduced to 1/10 of the emission when single carbon (acetate) is used. It is thought that multiple carbon source utilizes many denitrification pathways and it seems to be helpful for the reduction of $N_2O$ emission.

Screening of Adsorbent to Reduce Salt Concentration in the Plastic Film House Soil under Continuous Vegetable Cultivation (시설채소재배지의 토양특성과 흡착제 종류별 염류경감 효과)

  • Ok, Yong-Sik;Yoo, Kyung-Yoal;Kim, Yoo-Bum;Chung, Doug-Young;Park, Yong-Ha;Yang, Jae-E.
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.3
    • /
    • pp.253-260
    • /
    • 2005
  • Salt accumulation in the plastic film house soils under continuous cultivation condition causes problems such as salt damages to plants, nitrate accumulation in vegetables, groundwater contamination, etc. due to excess application of fertilizers. Objective of this research was to find an optimum adsorbent to reduce salt concentration in the soil solution of plastic film house soils, where crop injuries have been observed due to the salt accumulation. The soils were significantly high in available P $(1,431{\sim}6,516mg\;kg^{-1}),\;NO_3-N\;(117.60{\sim}395.73mg\;kg^{-1})$, exchangeable Ca $(4.06{\sim}11.07\;cmol_c\;kg^{-1})$ and Mg $(2.59{\sim}18.76\;cmol_c\;kg^{-1})$, as compared to those of the average upland soils in Korea. Soils were treated with each of adsorbent such as ion-exchange resin, zeolite, rice bran, etc. at 2% level and prepared into saturated-paste samples. After equilibrium, soil solution was vacuum-extracted from the soil and measured for changes of the pH, EC, and concentrations of $Ca^{2+},\;Mg^{2+},\;K^+,\;Na^+,\;{NH_4}^+,\;{PO_4}^{3-}\;and\;{NO_3}^-$. Rice bran effectively removed ${PO_4}^{3-}\;and\;{NO_3}^-$ in the soil solution up to 100%. Efficiency was decreased in the orders of rice bran > ion-exchange resin > zeolite. Removal efficiencies of zeolite and ion-exchange resin for $Ca^{2+}$ were ranged from 1 to 65% and from 7 to 61%, respectively. Ion-exchange resin was also effective for removing $Mg^{2+},\;K^+,\;Na^+,\;and\;{NH_4}^+$. Overall results demonstrated that rice bran and ion-exchange resin could be applicable for salt accumulated soil to remove the respective anion and cation.