• Title/Summary/Keyword: remote learning

검색결과 565건 처리시간 0.022초

머신러닝 기법을 이용한 산림의 층위구조 분류 (Classification of Forest Vertical Structure Using Machine Learning Analysis)

  • 권수경;이용석;김대성;정형섭
    • 대한원격탐사학회지
    • /
    • 제35권2호
    • /
    • pp.229-239
    • /
    • 2019
  • 모든 식생 군락은 각자 층위구조를 가지고 있다. 이를 '식생층위구조'라 부른다. 요즈음은 이 층위구조가 산림의 활력도, 다양성, 그리고 환경영향을 평가하는데 중요한 식별자로 작용하기 때문에 산림조사에 있어서 식생층위구조는 필수적으로 조사되어야한다. 그런데, 식생층위구조는 일종의 내부구조이므로 일반적으로 산림조사는 현장조사를 통해 이루어지는데, 이는 전통적인 방식으로 시간과 예산이 많이 든다. 따라서 본 연구에서는 산림의 층위구조를 조사하는데 드는 시간과 예산을 줄이기 위해 넓은 지역 탐사에 효과적인 원격탐사기법 중 항공촬영 사진과 대량의 데이터 마이닝(Data Mining)이 가능한 머신러닝(Machine Learning)기법 이용한 층위구조의 분류 방법을 제시한다. 칼라 항공사진, LiDAR(Light Detection and Ranging) DSM(Digital Surface Model)과 DTM(Digital Terrain Model)을 이용하여 Support Vector Machine(SVM) 머신러닝 기법을 이용하여 층위분류 연구를 진행하였다. 현장조사 자료를 참조하여 SVM기법 분류 결과와 비교했을 때 픽셀수에 기반한 정확도는 66.22%로 확인 되었다. 층위 분류 정확도는 단층과 다층의 구분은 비교적 높게 나타났으나, 다층끼리의 분류는 어렵다는 결론이 나타났다. 이러한 연구결과는 향후 다양한 식생데이터와 영상자료를 수집한다면 식생구조에 대한 머신러닝 연구분야에 더욱 발전이 가능할 것으로 기대된다.

GOCI-II 영상 기반 Random Forest 모델을 이용한 해빙 모니터링 적용 가능성 평가: 2021-2022년 랴오둥만을 대상으로 (Evaluation of Applicability of Sea Ice Monitoring Using Random Forest Model Based on GOCI-II Images: A Study of Liaodong Bay 2021-2022)

  • 김진영;장소영;권재엽;김태호
    • 대한원격탐사학회지
    • /
    • 제39권6_2호
    • /
    • pp.1651-1669
    • /
    • 2023
  • 해빙(sea ice)은 현재 전 세계 해양 면적의 약 7%를 차지하고 있으며 계절적, 연간 변화를 보이고 주로 극지방과 고위도 지역에 나타난다. 해빙은 대규모 공간 규모에서 다양한 종류로 형성되며 석유 및 가스탐사, 기타 해양활동이 급속히 증가하는 발해해는 해양 구조물 피해 및 해상 운송, 해양 생태계에 심각한 영향을 미치기 때문에 시계열 모니터링을 통해 해빙의 면적 및 유형 분류를 분석하는 것이 매우 중요하다. 현재 고해상도 위성영상 및 현장 실측 자료를 바탕으로 해빙의 종류 및 영역에 대한 연구가 진행되고 있지만 현장 실측자료를 획득하여 해빙 모니터링에는 한계가 있다. 고해상도 광학 위성영상은 광범위에서 해빙의 유형을 육안으로 탐지하고 식별할 수 있고, 짧은 시간해상도를 갖는 해양위성인 천리안 2B호(Geostationary Ocean Color Imager-II, GOCI-II)를 이용하여 해빙 모니터링의 공백을 보완할 수 있다. 이 연구에서는 고해상도 광학위성영상을 이용하여 생산된 학습자료를 기반으로 규칙기반 기계학습 모델을 훈련시키고 이를 GOCI-II 영상에서 탐지를 수행함으로써, 해빙 모니터링 활용 가능성을 알아보고자 하였다. 학습 자료는 발해(Bohai Sea)의 2021-2022년 랴오둥만(Liaodong Bay)을 대상으로 추출하였으며, GOCI-II를 활용한 Random Forest (RF) 모델을 구축하여 기존 normalized difference snow index (NDSI) 지수 기반 및 고해상도 위성영상에서 획득된 해빙 영역과 정성적 및 정량적 비교 분석하였다. 본 연구 결과 해빙의 영역을 과소평가한 NDSI 지수 기반 결과와 달리 비교적 자세한 해빙 영역을 탐지하였으며 유형별 해빙을 분류할 수 있어 해빙 모니터링이 가능함을 확인하였다. 향후 지속적인 학습 자료 및 해빙형성에 영향인자 구축을 통해 탐지 모델의 정확도를 향상시킨다면 고위도 해양 지역에서 해빙 모니터링 분야에 활용할 수 있을 것으로 기대된다.

스마트 원격강의 운영에 관한 연구 -시스코 웹엑스 미팅을 중심으로- (A Study on the operation of smart remote lecture - Focusing on Cisco Webex meeting-)

  • 김승인;이가하
    • 디지털융복합연구
    • /
    • 제18권9호
    • /
    • pp.317-322
    • /
    • 2020
  • 본 연구는 대학에서 원격강의를 올바르게 운영하기 위한 운영방안의 토대를 마련하는 데 목적이 있다. 'COVID-19'로 인해 비대면 수업을 시작한 학교 중, 시스코사의 웹엑스 미팅으로 원격강의를 진행한 일부 대학의 대학생, 대학원생을 대상으로 원격 강의 플랫폼 운영방안을 연구하였다. 먼저 문헌조사로 원격강의의 강의 요건을 정립하고, 설문조사를 통해 효과적인 운영 방안을 제시하였다. 연구 방법은 대학생, 대학원생 총 45명을 대상으로 2020년 4월 21일부터 5월 15일까지 진행하였다. 연구결과 크게 기본요소, 충족 요소에 대한 운영 방안을 제시할 수 있었다. 본 연구를 기점으로 COVID-19 이후에 발생할 수 있는 재난 상황 혹은 평상시 수업에서 활용될 수 있을 것으로 기대하며, 추후 원격 강의 플랫폼에 대한 사용성 평가와 국내 원격강의 플랫폼이 나아가야할 방향성이 제시되어야 할 것이다.

최신 원격탐사 기법을 이용한 지구환경 모니터링 및 예측 (Environmental Monitoring and Forecasting Using Advanced Remote Sensing Approaches)

  • 박선영;송아람;이양원;임정호
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.885-890
    • /
    • 2023
  • 인공위성의 발전과 함께 초소형 위성, 레이더 위성 등 이전보다 높은 시공간 해상도와 분광 해상도를 제공하는 위성들이 많아지고 있다. 이전에는 국가 단위의 위성개발이 주를 이루었지만 최근에는 민간기업에서도 위성을 개발하고 활용하는 연구들을 꾸준히 진행하고 있다. 본 특별호에서는 우리나라에서 수행되는 최신 원격탐사 기법 기반의 지구환경 분석에 대한 연구 및 기술개발 동향을 확인할 수 있다. 연구결과를 통해 추후 위성센서 개발을 위한 기초자료가 될 수 있으며 인공지능을 이용하는 연구자들에게 도메인에 대한 연구정보를 제공할 수 있다. 이번 특별호에서는 최신 원격탐사 기법을 데이터를 이용하여 지구환경을 모니터링하고 예측하는 연구들에 대한 소개를 중심으로 최근 원격탐사 분야의 기술 동향을 안내한다. 이를 통해 앞으로 원격탐사 분야에서 나아가야 할 방향을 확인하고자 한다.

컴퓨터 적응형 알고리즘을 이용한 웹기반 시험 시스템 설계 및 구축 (A Design and Implementation of Web-based Test System using Computer-adaptive Test Algorithm)

  • 조성호
    • 컴퓨터교육학회논문지
    • /
    • 제7권6호
    • /
    • pp.69-76
    • /
    • 2004
  • e러닝을 교육과 학습을 위하여 e비즈니스 기술 및 서비스를 사용하는 응용프로그램이다. 이는 원격지 자원과 서비스에 접근을 수월하게 함으로서 교육의 질을 높이기 위한 새로운 멀티미디어 및 인터넷 기술을 사용한다. 본 논문은 실제 TOEFL CBT에 기반을 두어 신중하게 설계되고 구현된 인터넷기반의 시험 시스템에 대하여 기술한다. 본 시스템은 콘텐츠 전달 기술, 컴퓨터 적응형 시험 알고리즘, 리뷰엔진으로 구성되어 있다. 본 논문에서는 컴퓨터기반 시험 시스템을 설계 및 구현 시 고려사항들에 대하여 서술한다.

  • PDF

An Efficient and Accurate Artificial Neural Network through Induced Learning Retardation and Pruning Training Methods Sequence

  • Bandibas, Joel;Kohyama, Kazunori;Wakita, Koji
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.429-431
    • /
    • 2003
  • The induced learning retardation method involves the temporary inhibition of the artificial neural network’s active units from participating in the error reduction process during training. This stimulates the less active units to contribute significantly to reduce the network error. However, some less active units are not sensitive to stimulation making them almost useless. The network can then be pruned by removing the less active units to make it smaller and more efficient. This study focuses on making the network more efficient and accurate by developing the induced learning retardation and pruning sequence training method. The developed procedure results to faster learning and more accurate artificial neural network for satellite image classification.

  • PDF

비대면 강의 운영 전략: 온라인 창업수업을 중심으로 (Analyzing Offline and Online Entrepreneurship Course Outcomes and Remote Education Strategy)

  • 이주성
    • 공학교육연구
    • /
    • 제25권5호
    • /
    • pp.55-67
    • /
    • 2022
  • Distance learning has become an efficient tool and is being widely used at work and in school. This research presents the results of a project-oriented entrepreneurship course taught both in classroom and online for a period of 3 years before and after the pandemic caused by COVID-19. Despite the various challenges, the outcome demonstrated that the students were able to attain required knowledge and capabilities in the online learning environment. As such, this paper discusses effective ways to blend in distance learning components so that both instructors and students can benefit from Internet-based education technologies. In the future, both face-to-face and virtual project work and study are likely to get integrated into a 'hyflex' class, which is flexible, on-offline education.

구글 맵 API를 이용한 딥러닝 기반의 드론 자동 착륙 기법 설계 (Design of Deep Learning-Based Automatic Drone Landing Technique Using Google Maps API)

  • 이지은;문형진
    • 산업융합연구
    • /
    • 제18권1호
    • /
    • pp.79-85
    • /
    • 2020
  • 최근 원격조종과 자율조종이 가능한 무인항공기(RPAS:Remotely Piloted Aircraft System)가 택배 드론, 소방드론, 구급 드론, 농업용 드론, 예술 드론, 드론 택시 등 각 산업 분야와 공공기관에서의 관심과 활용이 높아지고 있다. 자율조종이 가능한 무인드론의 안정성 문제는 앞으로 드론 산업의 발달과 함께 진화하면서 해결해야 할 가장 큰 과제이기도 하다. 드론은 자율비행제어 시스템이 지정한 경로로 비행하고 목적지에 정확하게 자동 착륙을 수행할 수 있어야 한다. 본 연구는 드론의 센서와 GPS의 위치 정보의 오류를 보완하는 방법으로서 착륙지점 영상을 통해 드론의 도착 여부를 확인하고 정확한 위치에서의 착륙을 제어하는 기법을 제안한다. 서버에서 도착지 영상을 구글맵 API로부터 수신받아 딥러닝으로 학습하고, 드론에 NAVIO2와 라즈베리파이, 카메라를 장착하여 착륙지점의 이미지를 촬영한 다음 이미지를 서버에 전송한다. Deep Learning으로 학습된 결과와 비교하여 임계치에 맞게 드론의 위치를 조정한 후 착륙지점에 자동으로 착륙할 수 있다.

합성곱신경망을 활용한 천리안위성 2A호 영상 기반의 동해안 냉수대 감지 연구 (A Study on the GK2A/AMI Image Based Cold Water Detection Using Convolutional Neural Network)

  • 박숭환;김대선;권재일
    • 대한원격탐사학회지
    • /
    • 제38권6_2호
    • /
    • pp.1653-1661
    • /
    • 2022
  • 본 연구에서는 천리안위성 2A호 1일 평균 표층수온영상을 대상으로 합성곱신경망(convolution neural network, CNN) 딥러닝 기법을 적용하여 냉수대 발생 여부를 분류하는 연구를 수행하였다. 이를 위하여, 2019년부터 2022년까지 1,155장의 영상을 사용하였으며, 국립수산과학원 제공 냉수대 발생 주의보 및 경보자료로부터 냉수대 발생 영상과 그 외 영상으로 분류하여 학습을 수행하였다. 학습 결과로 82.5%의 probability of detection (POD)와 54.4%의 false alarm ratio (FAR) 지수를 획득하였다. 오분류 분석을 통해 냉수대 분류에 실패한 경우의 대부분은 구름의 영향 때문이며, 비냉수대를 오분류한 경우의 대부분은 실제 영상에 냉수대가 존재함을 확인하였다.

Deep Learning-based Depth Map Estimation: A Review

  • Abdullah, Jan;Safran, Khan;Suyoung, Seo
    • 대한원격탐사학회지
    • /
    • 제39권1호
    • /
    • pp.1-21
    • /
    • 2023
  • In this technically advanced era, we are surrounded by smartphones, computers, and cameras, which help us to store visual information in 2D image planes. However, such images lack 3D spatial information about the scene, which is very useful for scientists, surveyors, engineers, and even robots. To tackle such problems, depth maps are generated for respective image planes. Depth maps or depth images are single image metric which carries the information in three-dimensional axes, i.e., xyz coordinates, where z is the object's distance from camera axes. For many applications, including augmented reality, object tracking, segmentation, scene reconstruction, distance measurement, autonomous navigation, and autonomous driving, depth estimation is a fundamental task. Much of the work has been done to calculate depth maps. We reviewed the status of depth map estimation using different techniques from several papers, study areas, and models applied over the last 20 years. We surveyed different depth-mapping techniques based on traditional ways and newly developed deep-learning methods. The primary purpose of this study is to present a detailed review of the state-of-the-art traditional depth mapping techniques and recent deep learning methodologies. This study encompasses the critical points of each method from different perspectives, like datasets, procedures performed, types of algorithms, loss functions, and well-known evaluation metrics. Similarly, this paper also discusses the subdomains in each method, like supervised, unsupervised, and semi-supervised methods. We also elaborate on the challenges of different methods. At the conclusion of this study, we discussed new ideas for future research and studies in depth map research.