• Title/Summary/Keyword: remote laboratory

Search Result 488, Processing Time 0.029 seconds

Subjective Correspondence among Visual Variables, Auditory Variables and Duration of Vibratory stimulus Using Remote Controller

  • Morimoto, Kazunari;Kurokawa, Takao;Shioyama, Atsuko;Kushiro, Noriyuki;Inoue, Masayuki
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.173-178
    • /
    • 2000
  • Subjective correspondence among visual variables, auditory variables and vibratory feedback to a hand was experimentally examined to improve usability of a remote controller. First, we studied the correspondence among visual variables represented on a screen or auditory variables and the duration of vibratory stimulus to the subjects' hand by subjective evaluation. Subjective rating method was used in ten items; suitability, comprehensibility, ease-to-use, naturalness, variety, activity, usualness, interest, wish-to-use and feeling of pleasure. Second, to show the effects of multi-modal interface using visual sense, the sense of auditory and vibratory sense, we combined positive stereotype of visual variables and auditory variables provided with the first experiment. The results showed some stereotype between visual variables or auditory variables and duration of vibratory stimulus. Some of the variables such as size, direction of motion, hue, brightness of color and volume of sound had high correspondence with the duration of vibration.

  • PDF

Speeding up the KLT Tracker for Real-time Image Georeferencing using GPS/INS Data

  • Tanathong, Supannee;Lee, Im-Pyeong
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.629-644
    • /
    • 2010
  • A real-time image georeferencing system requires all inputs to be determined in real-time. The intrinsic camera parameters can be identified in advance from a camera calibration process while other control information can be derived instantaneously from real-time GPS/INS data. The bottleneck process is tie point acquisition since manual operations will be definitely obstacles for real-time system while the existing extraction methods are not fast enough. In this paper, we present a fast-and-automated image matching technique based on the KLT tracker to obtain a set of tie-points in real-time. The proposed work accelerates the KLT tracker by supplying the initial guessed tie-points computed using the GPS/INS data. Originally, the KLT only works effectively when the displacement between tie-points is small. To drive an automated solution, this paper suggests an appropriate number of depth levels for multi-resolution tracking under large displacement using the knowledge of uncertainties the GPS/INS data measurements. The experimental results show that our suggested depth levels is promising and the proposed work can obtain tie-points faster than the ordinary KLT by 13% with no less accuracy. This promising result suggests that our proposed algorithm can be effectively integrated into the real-time image georeferencing for further developing a real-time surveillance application.

Extension of the NEAMS workbench to parallel sensitivity and uncertainty analysis of thermal hydraulic parameters using Dakota and Nek5000

  • Delchini, Marc-Olivier G.;Swiler, Laura P.;Lefebvre, Robert A.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3449-3459
    • /
    • 2021
  • With the increasing availability of high-performance computing (HPC) platforms, uncertainty quantification (UQ) and sensitivity analyses (SA) can be efficiently leveraged to optimize design parameters of complex engineering problems using modeling and simulation tools. The workflow involved in such studies heavily relies on HPC resources and hence requires pre-processing and post-processing capabilities of large amounts of data along with remote submission capabilities. The NEAMS Workbench addresses all aspects of the workflows involved in these studies by relying on a user-friendly graphical user interface and a python application program interface. This paper highlights the NEAMS Workbench capabilities by presenting a semiautomated coupling scheme between Dakota and any given package integrated with the NEAMS Workbench, yielding a simplified workflow for users. This new capability is demonstrated by running a SA of a turbulent flow in a pipe using the open-source Nek5000 CFD code. A total of 54 jobs were run on a HPC platform using the remote capabilities of the NEAMS Workbench. The results demonstrate that the semiautomated coupling scheme involving Dakota can be efficiently used for UQ and SA while keeping scripting tasks to a minimum for users. All input and output files used in this work are available in https://code.ornl.gov/neams-workbench/dakota-nek5000-study.

Surface Temperature Retrieval from MASTER Mid-wave Infrared Single Channel Data Using Radiative Transfer Model

  • Kim, Yongseung;Malakar, Nabin;Hulley, Glynn;Hook, Simon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.151-162
    • /
    • 2019
  • Surface temperature has been derived from the MODIS/ASTER airborne simulator (MASTER) mid-wave infrared single channel data using the MODerate resolution atmospheric TRANsmission (MODTRAN) radiative transfer model with input data including the University of Wisconsin (UW) emissivity, the National Centers for Environmental Prediction (NCEP) atmospheric profiles, and solar and line-of-sight geometry. We have selected the study area that covers some surface types such as water, sand, agricultural (vegetated) land, and clouds. Results of the current study show the reasonable geographical distribution of surface temperature over land and water similar to the pattern of the MASTER L2 surface temperature. The thorough quantitative validation of surface temperature retrieved from this study is somehow limited due to the lack of in-situ measurements. One point comparison at the Salton Sea buoy shows that the present estimate is 1.8 K higher than the field data. Further comparison with the MASTER L2 surface temperature over the study area reveals statistically good agreement with mean differences of 4.6 K between two estimates. We further analyze the surface temperature differences between two estimates and find primary factors to be emissivity and atmospheric correction.

Performance Analysis Based on RAU Selection and Cooperation in Distributed Antenna Systems

  • Wang, Gang;Meng, Chao;Heng, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5898-5916
    • /
    • 2018
  • In this paper, the downlink performance of multi-cell distributed antenna systems (DAS) with a single user in each cell is investigated. Assuming the channel state information is available at the transmitter, four transmission modes are formulated as combinations of remote antenna units (RAUs) selection and cooperative transmission, namely, non-cooperative transmission without RAU selection (NCT), cooperative transmission without RAU selection (CT), non-cooperative transmission with RAU selection (NCT_RAUS), and cooperative transmission with RAU selection (CT_RAUS). By using probability theory, the cumulative distribution function (CDF) of a user's signal to interference plus noise ratio (SINR) and the system ergodic capacity under the above four modes are determined, and their closed-form expressions are obtained. Furthermore, the system energy efficiency (EE) is studied by introducing a realistic power consumption model of DAS. An expression for determining EE is formulated, and the closed-form tradeoff relationship between spectral efficiency (SE) and EE is derived as well. Simulation results demonstrate their consistency with the theoretical analysis and reveal the factors constraining system EE, which provide a scientific basis for future design and optimization of DAS.

A SAR Signal Processing Algorithm using Wavenumber Domain

  • Won, Joong-Sun;Yoo, Hong-Ryong;Moon, Wooil-M.
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.2
    • /
    • pp.1-15
    • /
    • 1994
  • Since Seasat SAR mission in 1978, SAR has become one of the most important surface imaging tools in satellite remote sensing SAR achieves high resolution by signal processing synthesizing a larger aperture. Therefore, SAR signal processing along with antenna technology has been centered upon SAR technologies. Thus interpreters of SAR imagery as well as those who involved in signal processing require the knowledge of the principal SAR processing algorithm. Although the conventional range-Doppler approach has been widely adopted by many SAR processors, azimuth compression including the range migration has been problematic. The recent development of the wavenumber domain approace is able to provide high precision SAR focusing algorithm. Compared with the wavenumber domain algorithm derived by applying Born (first) approximation, the transfer function of the conventional range-Doppler algorithm accounts only for the first order approximation of the exact transfer function. The results of a simulation and an actual test using airborne C-band SAR configuration demonstrate the dxcellent performance of the wavenumber domain algorithm.

Study on HV Nano-second Pulse Electron Gun System (고전압 Nano-second펄스 전자총에 관한 연구)

  • Son, Y.K.;Park, S.J.;Jang, S.D.;Oh, J.S.;Cho, M.H.;NamKung, W.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1391-1393
    • /
    • 1995
  • An electron gun system for the Pohang Light Source has been installed and operated successfully. The basic design parameters are acceleration voltage of 80 kV, maximum peak emission current of 5 A, minimum pulse width of 1 ns, and maximum repetition rate of 100 Hz. The gun has a triode structure and is composed of a cathode, a focusing electrode(Wehnelt), and an anode. To sustain a $5{\times}10^{-9}$Torr vacuum, a $230{\ell}/s$ Ion pump has been adopted. We adopted a control and monitoring system based on the fiber-optic technology. In this article, we present the structure and operation principle of the system with special interest on the nanosecond pulser, remote control and monitoring system.

  • PDF

High Spatial Resolution Imaging of the Contiguous Objects Using Sub-Y-Type Interferometric Synthetic Aperture Radiometer

  • Lee Ho-Jin;Park Hyuk;Kim Sung-Hyun;Choi Jun-Ho;Seo Seung-Won;Kim Yong-Hoon;Kang Gum-Sil
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.53-56
    • /
    • 2004
  • Recently the interferometric synthetic aperture radiometer with sub-Y-type antenna array was suggested to improve the spatial resolution than that of conventional Y-type with the same number of antenna elements. The sub-Y-type performance has been reported under a point source target. In this paper, the performance of sub-Y-type is evaluated under contiguous objects. The angular resolution of sub-Y-type with 52 antennas was compared with that of Y-type with the 40 antennas. The images of sub-Y -type and Y-type array were simulated under the contiguous objects. The sub-Y-type showed higher resolution than Y-type in the simulation and experiments. The sub-Y-type has high spatial resolution than Y-type in case of contiguous source as well as single point source.

  • PDF

A Noise Re-radiation Calibration Technique in Interferometric Synthetic Aperture Radiometer for Sub-Y-type Array at Ka-Band

  • Seo Seungwon;Kim Sunghyun;Choi Junho;Park Hyuk;Lee Hojin;Kim Yonghoon;Kang Gumsil
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.577-580
    • /
    • 2004
  • To overcome with large size noise source distribution network design difficulty in interferometric radiometer system, especially for sub-Y-type array, a new on-board calibration technique using noise re-radiation is proposed in this paper. The suggested calibration technique is using noise re-radiation effect of center antenna after noise source injection from matched load. This approach is especially proper to sub-Y-type array interferometric synthetic aperture radiometer in mm-wave frequency band. Compared with noise injection network of a conventional synthetic aperture radiometer, the system mass, volume, and hardware complexity is reduced and cost-effective. Only one internal noise source, matched load, is used for injection using noise re-radiation technique a small set of sub-Y receiver channels is calibrated. Detailed calibration scenario is discussed and simulation results about noise re­radiation effect are presented.

  • PDF

Retrieval and Validation of Aerosol Optical Properties Using Japanese Next Generation Meteorological Satellite, Himawari-8 (일본 정지궤도 기상위성 Himawari-8을 이용한 에어로졸 광학정보 산출 및 검증)

  • Lim, Hyunkwang;Choi, Myungje;Kim, Mijin;Kim, Jhoon;Chan, P.W.
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.681-691
    • /
    • 2016
  • Using various satellite measurements in UV, visible and IR, diverse algorithms to retrieve aerosol information have been developed and operated to date. Advanced Himawari Imager (AHI) onboard the Himawari 8 weather satellite was launched in 2014 and has 16 channels from visible to Thermal InfRared (TIR) in high temporal and spatial resolution. Using AHI, it is very valuable to retrieve aerosol optical properties over dark surface to demonstrate its capability. To retrieve aerosol optical properties using visible and Near InfRared (NIR) region, surface signal is very important to be removed which can be estimated using minimum reflectivity method. The estimated surface reflectance is then used to retrieve the aerosol optical properties through the inversion process. In this study, we retrieve the aerosol optical properties over dark surface, but not over bright surface such as clouds, desert and so on. Therefore, the bright surface was detected and masked using various infrared channels of AHI and spatial heterogeneity, Brightness Temperature Difference (BTD), etc. The retrieval result shows the correlation coefficient of 0.7 against AERONET, and the within the Expected Error (EE) of 49%. It is accurately retrieved even for low Aerosol Optical Depth (AOD). However, AOD tends to be underestimated over the Beijing Hefei area, where the surface reflectance using the minimum reflectance method is overestimated than the actual surface reflectance.