• 제목/요약/키워드: remotal set

검색결과 1건 처리시간 0.013초

ON FARTHEST POINTS IN METRIC SPACES

  • Narang, T.D.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제9권1호
    • /
    • pp.1-7
    • /
    • 2002
  • For A bounded subset G of a metric Space (X,d) and $\chi \in X$, let $f_{G}$ be the real-valued function on X defined by $f_{G}$($\chi$)=sup{$d (\chi, g)\in:G$}, and $F(G,\chi)$={$z \in X:sup_{g \in G}d(g,z)=sup_{g \in G}d(g,\chi)+d(\chi,z)$}. In this paper we discuss some properties of the map $f_G$ and of the set $ F(G, \chi)$ in convex metric spaces. A sufficient condition for an element of a convex metric space X to lie in $ F(G, \chi)$ is also given in this pope.

  • PDF