• Title/Summary/Keyword: remediation efficiency

Search Result 328, Processing Time 0.023 seconds

Scaling up Hydrothermal Synthesis of Na-A Type Zeolite from Natural Siliceous Mudstone and Its Heavy Metal Adsorption Behavior (규질 이암으로부터 Na-A형 제올라이트의 scale-up 수열합성 및 중금속흡착)

  • Bae, In-Kook;Jang, Young-Nam;Shin, Hee-Young;Chae, Soo-Chun;Ryu, Kyoung-Won
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.341-347
    • /
    • 2008
  • The feasibility of commercializing the hydrothermal synthesis of Na-A type zeolite from siliceous mudstone has been conducted using a 50-liter bench-scale autoclave and the application of the zeolite as an environmental remediation agent. Siliceous mudstone, which is widely distributed around the Pohang area, was adopted as a precursor. The siliceous mudstone is favorable for the synthesis of zeolite because it contains 70.7% $SiO_2$ and 10.0% $Al_2O_3$, which are major ingredient of zeolite formation. The synthesis of zeolite was carried out under the following conditions that had been obtained from the previous laboratory-scale tests: 10hr reaction time, $80^{\circ}C$ reaction temperature, $Na_2O/SiO_2$ ratio = 0.6, $SiO_2/Al_2O_3$ ratio = 2.0 and $H_2O/Na_2O$ ratio= 98.6. The crystallinity and morphology of the zeolite formed were similar to those obtained from the laboratory-scale tests. The recovery and cation exchange ion capacity were 95% and 215 cmol/kg, respectively, which are slightly higher than those obtained in laboratory scale tests. To examine the feasibility of the zeolite as an environmental remediation agent, experiments for heavy metal adsorption to zeolite were conducted. Its removal efficiencies of heavy metals in simulated waste solutions decreased in the following sequences: Pb > Cd > Cu = Zn > Mn. In a solution of 1500 mg/L total impurity metals, the removal efficiencies for these impurity metals were near completion (> 99%) except for Mn whose efficiency was 98%. Therefore, the synthetic Na-A type zeolite was proven to be a strong absorbent effective for removing heavy metals.

Remediation of Heavy Metal Contaminated Groundwater by Using the Biocarrier with Dead Bacillus sp. B1 and Polysulfone (Bacillus sp. B1 사균과 Polysulfone으로 이루어진 미생물 담체를 이용한 중금속 오염 지하수 정화)

  • Lee, Min-Hee;Lee, Ji-Young;Wang, Soo-Kyun
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.555-564
    • /
    • 2010
  • Remediation process by using the bio-carrier (beads) with dead Bacillus sp. B1 and polysulfone was investigated for heavy metal contaminated groundwater. Sorption batch experiments using the bio-carrier were performed to quantify the heavy metal removal efficiencies from the contaminated solution. The analyses using SEM/EDS and TEM for the structure and the characteristic of precipitates on/inside the beads were also conducted to understand the sorption mechanism by the bio-carrier. Various amounts of freeze-dried dead Bacillus sp. B1 were mixed with polysulfone + DMF(N,N-dimethylformamide) solution to produce the bio-carrier (beads; less than 2mm in diameter) and 5% of Bacillus sp. B1 in the bio-carrier was optimal for Pb removal in the solution. The removal efficiency ratings of the bio-carrier for Pb, Cu and Cd were greater than 80% after adding 2g of bio-carrier in 50ml of aqueous solution (<10mg/L of each heavy metal concentration). Reaction time of the bio-carrier was very fast and most of the sorption reaction for heavy metals were completed within few hours. Batch experiments were duplicated at various pH conditions of aqueous solutions and Cu and Pb removal efficiencies highly maintained at wide pH ranges (pH 2-12), suggesting that the bio-carrier can be useful to clean up the acidic waste water such as AMD. From SEM/EDS and TEM analyses, it was observed that the bio-carrier was spherical shape and was overlapped by many porous layers. During the sorption experiment, Pb was crystallized on the surface of porous layers and also was mainly concentrated at the boundary of Bacillus sp. B1 stroma and polysulfone substrate, showing that the main mechanism of the bio-carrier to remove heavy metals is the sorption on/inside of the bio-carriers and the bio-carriers are excellent biosorbents for the removal of heavy metal ions from groundwater.

Effect of Organic Matter and Moisture Content on Reduction of Cr(VI) in Soils by Zerovalent Iron (영가철에 의한 토양 Cr(VI) 환원에 미치는 유기물 및 수분함량 영향)

  • Yang, Jae-E.;Lee, Su-Jae;Kim, Dong-Kuk;Oh, Sang-Eun;Yoon, Sung-Hwan;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.1
    • /
    • pp.60-65
    • /
    • 2008
  • Current soil remediation principles for toxic metals have some limitations even though they vary with different technologies. An alternative technology that transforms hazardous substances into nonhazardous ones would be environmentally beneficial. Objective of this research was to assess optimum conditions for Cr(VI) reduction in soils as influenced by ZVI(Zero-Valent Iron), organic matter and moisture content. The reduction ratio of Cr(VI) was increased from 37 to 40% as organic matter content increased from 1.07 to 1.75%. In addition, Cr(VI) concentration was reduced as soil moisture content increased, but the direct effect of soil moisture content on Cr(VI) reduction was less than 5% of the Cr(VI) reduction ratio. However, combined treatment of ZVI(5%), organic matter(1.75%) and soil moisture(30%) effectively reduced the initial Cr(VI) to over 95% within 5 days and nearly 100% after 30 days by increasing oxidation of ZVI and concurrent reduction of Cr(VI) to Cr(III). The overall results demonstrated that ZVI was effective in remediating Cr(VI) contaminated soils, and the efficiency was synergistic with the combined treatments of soil moisture and organic matter.

BTEX-contaminated Groundwater Remediation with Modified Fenton Reaction using Environmental Friendly Chelating Agent (친환경 착제가 적용된 modified Fenton 공정을 이용한 BTEX로 오염된 지하수의 복원)

  • Kwon, Yong-Jae;Jo, Young-Hoon;Jung, Jae-Gu;Kong, Sung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.638-646
    • /
    • 2014
  • The effect of in-organic chelating agents with Fe(II) and Fe(III) in modified Fenton was evaluated to degradation BTEX (benzene, toluene, ethylbenzene, xylene). Citric acid and pyrophosphate were used in experimentals and an optimum chelating agent for BTEX degradation was determined. In $H_2O_2$/Fe(III)/citric acid, degradation of BTEX was decreased when concentration of citric acid was increased. In $H_2O_2$/Fe(III)/pyrophosphate, degradation of BTEX was increased when concentration of pyrophosphate was increased and degradation for BTEX was relatively high compared with $H_2O_2$/Fe(III)/citric acid. In $H_2O_2$/Fe(II)/chelating agents, degradation for BTEX was high and pH variation was minimized when molar ratio of Fe(II) and citric acid was 1:1. Optimum molar concentration of Fe(II), citric acid and $H_2O_2$ were 7 mM, 7mM and 500 mM for degradation of 100 mg/L of benzene to obtain best efficiency of $H_2O_2$, least precipitation of iron and best degradation.

Evaluation of Purification Efficiency of Passive Treatment Systems for Acid Mine Drainage and Characterization of Precipitates in Ilwal Coal Mine (일월탄광에서 유출되는 산성광산배수 자연정화시설의 정화 효율 평가 및 침전물의 특성연구)

  • Ryu, Chung Seok;Kim, Yeong Hun;Kim, Jeong Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.97-105
    • /
    • 2014
  • Artificial precipitation ponds, consisting of three steps of oxidation pond, successive alkalinity producing system (SAPS) and swamp, were constructed for the treatment of the acid mine drainage from the Iwal coal mine. The efficacies of the passive treatment system in terms of neutralization of mine water and removal of dissolved ions were evaluated by the chemical analyses of the water samples. Mine water in the mine adits was acidic, showing the pH value of 2.28-2.42 but the value increased rapidly to 6.17-6.53 in the Oxidation pond. The purification efficiencies for the removal of Al and Fe were 100%, whereas those of $SO_4$, Mg, Ca, and Mn were relatively low of 50%, 40%, 24%, and 59%, respectively. These results indicate a need for application of additional remediation techniques in the passive treatment systems. The precipitates that formed at the bottom of the mine water channels were mainly schwertmannite ($Fe_8O_8(OH)_6SO_4$) and those in the leachate water were 2-line ferrihydrite ($Fe_2O_3{cdot}0.5H_2O$).

Evaluation of Denitrification Efficiency and Functional Gene Change According to Carbon(Fumarate) Concentration and Addition of Nitrate Contaminated-soil in Batch System (회분식반응조 실험을 통한 탄소원(Fumarate) 주입조건에 따른 지하수 중 탈질율 및 탈질 관련 기능성 유전자 분석)

  • Park, Sunhwa;Kim, Hyun-Koo;Kim, Moon-su;Lee, Gyeong-Mi;Jeon, Sang-Ho;Song, Dahee;Kim, Deok-hyun;Kim, Young;Kim, Tae-seung
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.80-89
    • /
    • 2015
  • Nitrate is on the most seriou pollutant encountered in shallow groundwater aquifer in agricultural area. There are various remediation technologies such as ion exchange, reverse osmosis, and biological denitrification to recover from nitrate contamination. Biological denitrification by indigenous microorganism of the technologies has been reviewed and applied on nitrate contaminated groundwater. In this work, we selected the site where the annual nitrate (NO3) concentration is over 105 mg/L and evaluated denitrification process with sampled soil and groundwater from 3 monitoring wells (MW4, 5, 6). In the results, the nitrate degradation rate in each well (MW 4, 5, and 6) was 25 NO3 mg/L/day, 6 NO3 mg/L/day, and 3.4 NO3 mg/L/day, respectively. Nitrate degradation rate was higher in batch system treated with 2 times higher fumarate as carbon source than control batch system (0.42M fumrate/1M NO3), comparing with batch system with soil sample. This result indicates that increase of carbon source is more efficient to enhance denitrification rate than addition of soil sample to increase microbial dynamics. In this work, we also confirmed that monitoring method of functional genes (nirK and nosZ) involved in denitrification process can be applied to evaluated denitrifcation process possibility before application of field process such as in-situ denitrification by push-pull test.

A Study on the Modified Fenton Oxidation of MTBE in Groundwater with Permeable Reactive Barrier using Waste Zero-valent Iron (폐영가철 투수성반응벽체를 이용한 Modified Fenton 산화에 의한 MTBE 처리연구)

  • Moon, So-Young;Oh, Min-Ah;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.2
    • /
    • pp.15-21
    • /
    • 2012
  • MTBE (Methyl tertiary-butyl ether) has been commonly used as an octane enhancer to replace tetraethyl lead in gasoline, because MTBE increases the efficiency of combustion and decreases the emission of carbon monoxide. However, MTBE has been found in groundwater from the fuel spills and leaks in the UST (Underground Storage Tank). Fenton's oxidation, an advanced oxidation catalyzed with ferrous iron, is successful in removing MTBE in groundwater. However, Fenton's oxidation requires the continuous addition of dissolved $Fe^{2+}$. Zero-valent iron is available as a source of catalytic ferrous iron of MFO (Modified Fenton's Oxidation) and has been studied for use in PRBs (Permeable Reactive Barriers) as a reactive material. Therefore, this study investigated the condition of optimization in MFO-PRBs using waste zero-valent iron (ZVI) with the waste steel scrap to treat MTBE contaminated groundwater. Batch tests were examined to find optimal molar ratio of MTBE : $H_2O_2$ on extent to degradation of MTBE in groundwater at pH 7 with 10% waste ZVI. As the results, the ratio of optimization of MTBE to hydrogen peroxide for MFO was determined to be 1:300[mM]. The column experiment was conducted to know applicability of MFO-PRBs for MTBE remediation in groundwater. As the results of column test, MTBE was removed 87% of the initial concentration during 120days of operational period. Interestingly, MTBE was degraded not only within waste ZVI column but also within sand column. It means the aquifer may affect continuously the MTBE contaminated groundwater after throughout the waste ZVI barrier. The residual products showed acetone, TBF (Tert-butyl formate) and TBA (Tert-butyl acetate) during this test. The results of the present study showed that the recycled materials can be effectively used for not only a source of catalytic ferrous iron but also a reactive material of the MFO-PRBs to remove MTBE in groundwater.

Selective Removal of Arsenic Compounds from the Contaminated Paddy Soil in China Using Froth Flotation Technique (포말부선 기술을 이용한 중국 오염농경지내 비소화합물의 선택적 제거)

  • Lee, Seungwoo;Jeon, Chilsung;Lee, Eunseong;Yoo, Kyungmin;Choi, Junhyun;Kim, Hyunjung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.7
    • /
    • pp.343-352
    • /
    • 2016
  • Effects of grinding time and chemicals dosage in arsenic removal from contaminated paddy soil in China were investigated using lab scale attrition and froth flotation combining process. Arsenic concentration in the field soil was 76.51 mg/kg, exceeding Korean and Chinese standards, and predominant arsenic compounds fraction in sequential extraction was "residual" (over 80%). After wet sieving, soil with >2 mm and < 0.038 mm showed concentration lower than 'Warning Level' in Korea. Soil with 0.038-0.075 mm, showing the highest concentration, was discarded since it occupied minor weight fraction (10.1%). Thus soil between 0.075 and 2 mm was only used in the combining process. The highest Arsenic concentration in progeny fragments smaller than 0.038 mm reached up to 981.66 mg/kg after 5 min of attrition. Optimal dosage of collector ($C_5H_{11}OCS_2K$) and modifier ($Na_2S$ and $CuSO_4$) in froth flotation process for the selective separation of the chipped progeny particles from the parent fragments were determined both as 200 g/ton. Arsenic removal efficiency in froth flotation process was 38.47% and it was increased to 72.74% in additional flotation process, scavenging. Average arsenic concentration after overall process - wet sieving, attrition and froth flotation - was estimated to 16.45 mg/kg.

Assessment of Biochemical Efficiency for the Reduction of Heavy Metal and Oil Contaminants in Contaminated Soils (토양내 중금속 및 유류 오염농도 저감을 위한 생화학적 기작의 효율성 평가)

  • Kim, Man-Il;Jeong, Gyo-Cheol;Kim, Eul-Young
    • The Journal of Engineering Geology
    • /
    • v.22 no.3
    • /
    • pp.253-262
    • /
    • 2012
  • With the aim of remediating soils contaminated by heavy metals and oil, experimental research was conducted to evaluate the optimal design factors for remediation in terms of efficient soil washing methods and processes. The experiments employed absorptiometric analysis and gas chromatography methods to reduce the concentration of heavy metals such as cooper (Cu), lead (Pb), and zinc (Zn), and total petroleum hydrocarbons (TPH) in contaminated soils. The experimental processes consisted of deciding on the washing solution, washing time, and dilution ratio for contaminated soils. A dissolution analysis of heavy metals was then performed by the addition of surfactant, based on the results of the decision experiments, and the injection processes of microbes and hydrogen peroxide were selected. The experimental results revealed that reduction effects in contaminated soils under the experimental conditions were most efficient with hydrochloric acid 0.1 mole, washing time 1 hour, and dilution ratio 1:3, individually. Additional reduction effects for heavy metals and TPH were found with the addition of a washing solution of 1% of surfactant. The addition of microbes and hydrogen peroxide caused a reduction in TPH concentration.

Removal of NAPL from Aquifer Using Surfactant-enhanced Air Sparging at Elevated Temperature (승온조건의 SEAS(surfactant-enhanced air sparging) 기술을 이용한 대수층 NAPL(n-decane)의 휘발제거)

  • Song, Young-Su;Kwon, Han-Joon;Kim, Heon-Ki
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.87-94
    • /
    • 2009
  • Surfactant-enhanced air sparging (SEAS) was developed to suppress the surface tension of groundwater prior to air sparging resulting in higher air saturation and larger contact area between NAPL and gas during air sparging. Larger contacting interface between NAPL and gas means faster mass transfer of contaminants from NAPL to gas phase. This new technique, however, is limited to relatively volatile contaminants because vaporization is its basic mechanism of mass transfer. In this study, SEAS was tested at an elevated temperature for a semi-volatile n-decane, which is expected not to be a good candidate of SEAS application due to its low vapor pressure at ambient temperature. Three sparging experiments were conducted using 1-dimensional column (5 cm id, 80 cm length) packed with sand; (1) ambient temperature ($23^{\circ}C$), column saturated with distilled water, (2) SEAS at ambient temperature ($23^{\circ}C$), for n-decane contaminated sand, (3) SEAS at elevated temperature ($73^{\circ}C$), for n-decane contaminated sand. Higher air saturation was achieved by SEAS compared to that by air sparging without surfactant application. The n-decane removal efficiency of SEAS at elevated temperature was significantly higher(> 10 times) than that of ambient SEAS. The n-decane concentrations in the gas effluent from column during SEAS at $73^{\circ}C$ are found to be 10 times of those measured at ambient temperature. Thus, SEAS technique can be applied for removal of semi-volatile contaminants provided that an appropriate technique for elevating aquifer temperature is available.