• Title/Summary/Keyword: reliable feature selection

Search Result 27, Processing Time 0.019 seconds

Remaining useful life prediction for PMSM under radial load using particle filter

  • Lee, Younghun;Kim, Inhwan;Choi, Sikgyoung;Oh, Jaewook;Kim, Namsu
    • Smart Structures and Systems
    • /
    • v.29 no.6
    • /
    • pp.799-805
    • /
    • 2022
  • Permanent magnet synchronous motors (PMSMs) are widely used in systems requiring high control precision, efficiency, and reliability. Predicting the remaining useful life (RUL) with health monitoring of PMSMs prevents catastrophic failure and ensures reliable operation of system. In this study, a model-based method for predicting the RUL of PMSMs using phase current and vibration signals is proposed. The proposed method includes feature selection and RUL prediction based on a particle filter with a degradation model. The Paris-Erdogan model describing micro fatigue crack propagation is used as the degradation model. An experimental set-up to conduct accelerated life test, capable of monitoring various signals was designed in this study. Phase current and vibration data obtained from an accelerated life test of the PMSMs were used to verify the proposed approach. Features extracted from the data were clustered based on monotonicity and correlation clustering, respectively. The results identify the effectiveness of using the current data in predicting the RUL of PMSMs.

Breast Cancer Images Classification using Convolution Neural Network

  • Mohammed Yahya Alzahrani
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.113-120
    • /
    • 2023
  • One of the most prevalent disease among women that leads to death is breast cancer. It can be diagnosed by classifying tumors. There are two different types of tumors i.e: malignant and benign tumors. Physicians need a reliable diagnosis procedure to distinguish between these tumors. However, generally it is very difficult to distinguish tumors even by the experts. Thus, automation of diagnostic system is needed for diagnosing tumors. This paper attempts to improve the accuracy of breast cancer detection by utilizing deep learning convolutional neural network (CNN). Experiments are conducted using Wisconsin Diagnostic Breast Cancer (WDBC) dataset. Compared to existing techniques, the used of CNN shows a better result and achieves 99.66%% in term of accuracy.

Incremental Enrichment of Ontologies through Feature-based Pattern Variations (자질별 관계 패턴의 다변화를 통한 온톨로지 확장)

  • Lee, Sheen-Mok;Chang, Du-Seong;Shin, Ji-Ae
    • The KIPS Transactions:PartB
    • /
    • v.15B no.4
    • /
    • pp.365-374
    • /
    • 2008
  • In this paper, we propose a model to enrich an ontology by incrementally extending the relations through variations of patterns. In order to generalize initial patterns, combinations of features are considered as candidate patterns. The candidate patterns are used to extract relations from Wikipedia, which are sorted out according to reliability based on corpus frequency. Selected patterns then are used to extract relations, while extracted relations are again used to extend the patterns of the relation. Through making variations of patterns in incremental enrichment process, the range of pattern selection is broaden and refined, which can increase coverage and accuracy of relations extracted. In the experiments with single-feature based pattern models, we observe that the features of lexical, headword, and hypernym provide reliable information, while POS and syntactic features provide general information that is useful for enrichment of relations. Based on observations on the feature types that are appropriate for each syntactic unit type, we propose a pattern model based on the composition of features as our ongoing work.

A Novel Classification Model for Employees Turnover Using Neural Network for Enhancing Job Satisfaction in Organizations

  • Tarig Mohamed Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.71-78
    • /
    • 2023
  • Employee turnover is one of the most important challenges facing modern organizations. It causes job experiences and skills such as distinguished faculty members in universities, rare-specialized doctors, innovative engineers, and senior administrators. HR analytics has enhanced the area of data analytics to an extent that institutions can figure out their employees' characteristics; where inaccuracy leads to incorrect decision making. This paper aims to develop a novel model that can help decision-makers to classify the problem of Employee Turnover. By using feature selection methods: Information Gain and Chi-Square, the most important four features have been extracted from the dataset. These features are over time, job level, salary, and years in the organization. As one of the important results of this research, these features should be planned carefully to keep organizations their employees as valuable assets. The proposed model based on machine learning algorithms. Classification algorithms were used to implement the model such as Decision Tree, SVM, Random Frost, Neuronal Network, and Naive Bayes. The model was trained and tested by using a dataset that consists of 1470 records and 25 features. To develop the research model, many experiments had been conducted to find the best one. Based on implementation results, the Neural Network algorithm is selected as the best one with an Accuracy of 84 percents and AUC (ROC) 74 percents. By validation mechanism, the model is acceptable and reliable to help origination decision-makers to manage their employees in a good manner.

Reliable Camera Pose Estimation from a Single Frame with Applications for Virtual Object Insertion (가상 객체 합성을 위한 단일 프레임에서의 안정된 카메라 자세 추정)

  • Park, Jong-Seung;Lee, Bum-Jong
    • The KIPS Transactions:PartB
    • /
    • v.13B no.5 s.108
    • /
    • pp.499-506
    • /
    • 2006
  • This Paper describes a fast and stable camera pose estimation method for real-time augmented reality systems. From the feature tracking results of a marker on a single frame, we estimate the camera rotation matrix and the translation vector. For the camera pose estimation, we use the shape factorization method based on the scaled orthographic Projection model. In the scaled orthographic factorization method, all feature points of an object are assumed roughly at the same distance from the camera, which means the selected reference point and the object shape affect the accuracy of the estimation. This paper proposes a flexible and stable selection method for the reference point. Based on the proposed method, we implemented a video augmentation system that inserts virtual 3D objects into the input video frames. Experimental results showed that the proposed camera pose estimation method is fast and robust relative to the previous methods and it is applicable to various augmented reality applications.

Clustering Algorithm with using Road Side Unit(RSU) for Cluster Head(CH) Selection in VANET (차량 네트워크 환경에서 도로 기반 시설을 이용한 클러스터 헤드 선택 알고리즘)

  • Kwon, Hyuk-joon;Kwon, Yong-ho;Rhee, Byung-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.620-623
    • /
    • 2014
  • Network topology for communication between vehicles are quickly changing because vehicles have a special movement pattern, especially character which is quickly changed by velocity and situation of road. Because of these feature, it is not easy to apply reliable routing on VANET(Vehicular Ad-hoc Network). Clustering method is one of the alternatives which are suggested for overcoming weakness of routing algorithm. Clustering is the way to communicate and manage vehicles by binding them around cluster head. Therefore choosing certain cluster head among vehicles has a decisive effect on decreasing overhead in relevant clustering and determining stability and efficiency of the network. This paper introduces new cluster head selection algorithm using RSU(Road Side Unit) different from existing algorithms. We suggest a more stable and efficient algorithm which decides a priority of cluster head by calculating vehicles' velocity and distance through RSU than existing algorithms.

  • PDF

Development of the KOSPI (Korea Composite Stock Price Index) forecast model using neural network and statistical methods) (신경 회로망과 통계적 기법을 이용한 종합주가지수 예측 모형의 개발)

  • Lee, Eun-Jin;Min, Chul-Hong;Kim, Tae-Seon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.95-101
    • /
    • 2008
  • Modeling of stock prices forecast has been considered as one of the most difficult problem to develop accurately since stock prices are highly correlated with various environmental conditions including economics and political situation. In this paper, we propose a agent system approach to predict Korea Composite Stock Price Index (KOSPI) using neural network and statistical methods. To minimize mean of prediction error and variation of prediction error, agent system includes sub-agent modules for feature extraction, variables selection, forecast engine selection, and forecasting results analysis. As a first step to develop agent system for KOSPI forecasting, twelve economic indices are selected from twenty two basic standard economic indices using principal component analysis. From selected twelve economic indices, prediction model input variables are chosen again using best-subsets regression method. Two different types data are tested for KOSPI forecasting and the Prediction results showed 11.92 points of root mean squared error for consecutive thirty days of prediction. Also, it is shown that proposed agent system approach for KOSPI forecast is effective since required types and numbers of prediction variables are time-varying, so adaptable selection of modeling inputs and prediction engine are essential for reliable and accurate forecast model.