• Title/Summary/Keyword: reliable data transmission

Search Result 320, Processing Time 0.029 seconds

Policy-Based Identity Authentication and Transmission Architecture for Highly Reliable Emergency Bio-Data Management in Wireless Mesh Network for U-Healthcare (U-헬스케어를 위한 무선 매쉬 네트워크에서 고 신뢰성 있는 응급 생체 데이터 관리를 위한 정책기반의 신원 인증 및 전송 구조)

  • Chun, Seung-Man;Woo, Yeung-Kyung;Park, Jong-Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.21-29
    • /
    • 2013
  • This paper proposed the architecture of the authentication and the transmission for high reliable emergency data management based on U-healthcare wireless mesh networks. In U-healthcare monitoring service, the high reliable bio data management as well as the data transmission are required because the monitoring emergency bio data is related linked to life. More specifically, the technologies of the identity authentication of the measuring bio data, the personalized emergency status diagnosis who is authenticated the bio data and the emergency data transmission are important first of all. To do this, this paper presents the structure and protocol of the identity authentication management with using the extended IEEE 11073 PHD, the structure of policy-based management of the emergency bio data for the highly reliable management and the resilient routing protocol based on wireless mesh network for the reliable data transmission.

A Reliable Transmission and Buffer Management Techniques of Event-driven Data in Wireless Sensor Networks (센서 네트워크에서 Event-driven 데이터의 신뢰성 있는 전송 및 버퍼 관리 기법)

  • Kim, Dae-Young;Cho, Jin-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6B
    • /
    • pp.867-874
    • /
    • 2010
  • Since high packet losses occur in multi-hop transmission of wireless sensor networks, reliable data transmission is required. Especially, in case of event-driven data, a loss recovery mechanism should be provided for lost packets. Because retransmission for lost packets is requested to a node that caches the packets, the caching node should maintains all of data for transmission in its buffer. However, nodes of wireless sensor networks have limited resources. Thus, both a loss recovery mechanism and a buffer management technique are provided for reliable data transmission in wireless sensor networks. In this paper, we propose a buffer management technique at a caching position determined by a loss recovery mechanism. The caching position of data is determined according to desirable reliability for the data. In addition, we validate the performance of the proposed method through computer simulations.

The Influence of Noise Environment upon Voice and Data Transmission in the RF-CBTC System

  • Kim, Min-Seok;Lee, Sang-Hyeok;Lee, Jong-Woo
    • International Journal of Railway
    • /
    • v.3 no.2
    • /
    • pp.39-45
    • /
    • 2010
  • The RF-CBTC (Radio Frequency-Communication Based Train Control) System is a communication system in railroad systems. The communication method of RF-CBTC system is the wireless between the wayside device and on-board device. The wayside device collects its location and speed from each train and transmits the distance from the forwarding train to the speed-limit position to it. The on-board device controlling device controls the speed optimum for the train. In the case of the RF-CBTC system used in Korea, transmission frequency is 2.4 [GHz]. It is the range of ISM(Industrial Scientific and Medical equipment) band and transmission of voice and data is performed by CDMA (Code Division Multiple Access) method. So noises are made in the AWGN (Additive White Gaussian Noise) and fading environment. Currently, the SNR (Signal to Noise Ratio) is about 20 [dB], so due to bit errors made by noises, transmission of reliable information to the train is not easy. Also, in the case that two tracks are put to a single direction, it is needed that two trains transmit reliable voice and data to a wayside device. But, by noises, it is not easy that just a train transmits reliable information. In this paper, we estimated the BER (Bit Error Rate) related to the SNR of voice and data transmission in the environment such as AWGN and fading from the RF-CBTC system using the CDMA method. Also, we supposed the SNR which is required to meet the BER standard for voice and data transmission. By increasing the processing gain that is a ratio of chip transmission to voice and data transmission, we made possible voice and data transmission from maximally two trains to a wayside device, and demonstrated it by using Matlab program.

  • PDF

Design of a Reliable Data Diode System (신뢰성 있는 단방향 데이터 전송 시스템 설계)

  • Kim, Dongwook;Min, Byunggil
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.6
    • /
    • pp.1571-1582
    • /
    • 2016
  • One of the issues, which is dealed with in undirectional data transmission technology, is reducing the packet loss in TCP based data transfer. We can decrease the packet loss by using several well known error correction approaches. Although we utilize those previous approaches, the packet loss by both link errror and buffer overflow could be occurred. In this paper, we propose the RED(REliable Data diode). RED also uses the TCP proxy approach for supporting the TCP based data transfer which is similar with the existing unidirectional data transmission technologies. The RED transmission system could alleviate the packet loss caused by buffer overflow by exploiting the delaying transmission of TCP packets. Furthermore, in order to reduce the packett loss caused by link error in the unidirectional transmission link, the RED transmission system transmits one or more duplicated packets to the RED reception system by considering both the remaining resources and packet importance.

CoAP-based Reliable Message Transmission Scheme in IoT Environments

  • Youn, Joosang;Choi, Hun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.1
    • /
    • pp.79-84
    • /
    • 2016
  • In this paper, we propose reliable message transmission scheme based on CoAP, considering the constrained feature of IoT device, such as low power, the limited memory size and low computing capacity. Recently, the various kinds of application protocol has been studied to support IoT environments. In particular, CoAP protocol was developed as application protocol for IoT at the IETF core WG. However, because CoAP protocol is deigned to be used in constrained node, this protocol uses UDP at transport layer. Thus, data loss may occur frequently in network congestion environments. The proposed scheme, in this paper, is to overcome the problem of frequent data loss with low overhead. Also it includes the function which is to minimize the data loss in sleep mode of IoT device.

Advanced Delay-based Reliable Data Transmission for Efficiency in Wireless Sensor Networks (무선 센서 네트워크에서 딜레이 기반의 에너지 효율적이며 신뢰성 있는 데이터 전송기법)

  • Shon, Min han;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.665-667
    • /
    • 2011
  • 최근에 에너지 효율적이며 신뢰성 있는 데이터 전송을 보장하기 위한 많은 라우팅 기법의 연구가 진행되고 있다. 하지만 현재까지 무선센서네트워크에서의 표준 라우팅 기법이 없는 상황에서 신뢰성을 제공하기 위한 새로운 라우팅 기법을 제안하는 것은 실용적이지 않으며 비효율적이다. 본 논문에서는 신뢰성 있는 데이터 전송을 범용적으로 보장하기 위해서 기존의 라우팅 기법의 신뢰성 및 확장성을 제공하는 모듈기법인 DRDT(Delay-based Reliable Data Transmission)를 향상시킨 ADRDT(Advenced Delay-based Reliable Data Transmission) 기법을 제안한다. ADRDT는 수신노드가 불안정한 링크상태로 인해 데이터 수신을 실패하는 경우 데이터를 오버히어링한 헬퍼노드(helper node)의 협력적인 재전송을 통해 신뢰성을 제공한다. 헬퍼노드는 수신노드의 이웃노드가 데이터를 오버히어링할 때 딜레이를 이용한 분산적 방법을 통해 동적으로 선정되며, 수신노드와의 링크상태를 고려하기 때문에 효과적으로 재전송 횟수를 감소시킨다. 제안 기법은 기존 기법과 비교해 전송 비용을 약 16.5% 감소시킨다.

Reliable Data Transmission Based on Erasure-resilient Code in Wireless Sensor Networks

  • Lei, Jian-Jun;Kwon, Gu-In
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.1
    • /
    • pp.62-77
    • /
    • 2010
  • Emerging applications with high data rates will need to transport bulk data reliably in wireless sensor networks. ARQ (Automatic Repeat request) or Forward Error Correction (FEC) code schemes can be used to provide reliable transmission in a sensor network. However, the naive ARQ approach drops the whole frame, even though there is a bit error in the frame and the FEC at the bit level scheme may require a highly complex method to adjust the amount of FEC redundancy. We propose a bulk data transmission scheme based on erasure-resilient code in this paper to overcome these inefficiencies. The sender fragments bulk data into many small blocks, encodes the blocks with LT codes and packages several such blocks into a frame. The receiver only drops the corrupted blocks (compared to the entire frame) and the original data can be reconstructed if sufficient error-free blocks are received. An incidental benefit is that the frame error rate (FER) becomes irrelevant to frame size (error recovery). A frame can therefore be sufficiently large to provide high utilization of the wireless channel bandwidth without sacrificing the effectiveness of error recovery. The scheme has been implemented as a new data link layer in TinyOS, and evaluated through experiments in a testbed of Zigbex motes. Results show single hop transmission throughput can be improved by at least 20% under typical wireless channel conditions. It also reduces the transmission time of a reasonable range of size files by more than 30%, compared to a frame ARQ scheme. The total number of bytes sent by all nodes in the multi-hop communication is reduced by more than 60% compared to the frame ARQ scheme.

The QoS support using DSR protocol In Mobile Ad-hoc Network (이동 애드혹 네트워크에서 DSR 프로토콜을 이용한 QoS 지원)

  • Park, Gyong-Bae;Kang, Kyoeng-In;Oh, Se-Duck
    • Journal of IKEEE
    • /
    • v.7 no.1 s.12
    • /
    • pp.63-71
    • /
    • 2003
  • In this paper, we propose an DSR(Dynamic Source Routing) protocol to support QoS for reliable data transmission in the mobile ad-hoc network. The proposed algorithm uses DSR protocol to support QoS as its basic routing protocol, and uses the nodes which are between source and destination nodes as key QoS support. Because of moving nodes there is some problem that is restricted reliable data transmission. For solve this problem, source node set up the QoS link with destination node. The nodes that are located at QoS link and find out loss of transmission path save the transmitting data packets. Those search a new transmission path to destination node and transmit the saved data packet to destination node. As the result of evaluation, we found the proposed QoS network guaranteed reliable data transmission with almost 100% data reception rate for slowly moving mobile ad-hoc network and with more 96% data reception rate, which is improvement of 3.7737% reception rate compared with none QoS network, for continuously fast moving mobile ad-hoc network.

  • PDF

Secure Cluster Selection in Autonomous Vehicular Networks

  • Mohammed, Alkhathami
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.11-16
    • /
    • 2023
  • Vehicular networks are part of the next generation wireless and smart Intelligent Transportation Systems (ITS). In the future, autonomous vehicles will be an integral part of ITS and will provide safe and reliable traveling features to the users. The reliability and security of data transmission in vehicular networks has been a challenging task. To manage data transmission in vehicular networks, road networks are divided into clusters and a cluster head is selected to handle the data. The selection of cluster heads is a challenge as vehicles are mobile and their connectivity is dynamically changing. In this paper, a novel secure cluster head selection algorithm is proposed for secure and reliable data sharing. The idea is to use the secrecy rate of each vehicle in the cluster and adaptively select the most secure vehicle as the cluster head. Simulation results show that the proposed scheme improves the reliability and security of the transmission significantly.

A Design of Hop-by-Hop based Reliable Congestion Control Protocol for WSNs (무선 센서 네트워크를 위한 Hop-by-Hop 기반의 신뢰성 있는 혼잡제어 기법 설계)

  • Heo Kwan;Kim Hyun-Tae;Ra In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.6
    • /
    • pp.1055-1059
    • /
    • 2006
  • In Wireless Sensor Networks(WSNs), a sensor node broadcasts the acquisited sensing data to neighboring other nodes and it makes serious data duplication problem that increases network traffic loads and data loss. This problem is concerned with the conflict condition for supporting both the reliability of data transfer and avoidance of network congestion. To solve the problem, a reliable congestion control protocol is necessary that considers critical factors affecting on data transfer reliability such as reliable data transmission, wireless loss, and congestion loss for supporting effective congestion control in WSNs. In his paper, we proposes a reliable congestion protocol, called HRCCP, based on hop-hop sequence number, and DSbACK by minimizing useless data transfers as an energy-saved congestion control method.