• Title/Summary/Keyword: reliability cost evaluation

Search Result 271, Processing Time 0.027 seconds

Study on the algorithm for the Reasonable Switch Automation Rate with Customer Interruption Cost and Reliability Evaluation (정전비용과 신뢰도 분석을 통한 분할 개폐기의 적정 자동화율 도출 알고리즘에 관한 연구)

  • Chai, Hui-Seok;Shin, Hee-Sang;Cho, Sung-Min;Moon, Jong-Fil;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.467-473
    • /
    • 2013
  • The addition of disconnect switches to a distribution feeder or the replacement of the manual switches with the automatic switches do, in general, increase reliability by decreasing the duration of the outage of many to the customers on the feeder and reducing the outage section. However, the improvement of reliability in power distribution system causes an increase of the investment cost, for example, replacement costs, labor costs, and so on. For this reason - the balance between investment and reliability improvement - many studies about the appropriate level of investment have been conducted. In this paper, we suggest the algorithm for determining the reasonable switch automation rate in the power distribution system. We evaluate the customer interruption cost and reliability for several cases - these cases relate with the switch automation rate - in the domestic metropolitan power distribution system, estimate the effectiveness of changing the manual switch to automatic switch quantitatively. These results can help the determining on the disconnect switch's automation rate.

Reliability Design Based on System Performance-Cost Trade-off for Manufacturing facility

  • Hwang, Heung-Suk;Hwang, Gyu-Wan
    • International Journal of Reliability and Applications
    • /
    • v.2 no.4
    • /
    • pp.269-280
    • /
    • 2001
  • The objective of this paper is to provide a model for effective implementation of costing RAM management in the design and procurement of production facility considering the system cost-performance trade-off. This research proposes a two-step approach of costing RAM design and test of system RAM for production facility. In Step 1, a static model is proposed to find an initial system configuration to meet the required performance based on system RAM and LCC and analyzes the trade-off relationships between various factors of RAM and LCC. In the second Step, we developed time and failure truncated models for system reliability test and analysis. For the computational purpose, we developed computer programs and have shown the sample results. By the sample test run, the proposed model has shown the possibilities to provide a good method to analyze system performance evaluation for both design and operational phase, This model can be applied to a wide variety of systems not only for costing RAM of the production facilities but also for the other kinds of equipment.

  • PDF

Economic Evaluation of Power Grid Interconnection between Offshore Wind Power Plants (해상풍력발전단지 간의 전력계통 연계에 관한 경제성 분석 연구)

  • Moon, Won-Sik;Jo, Ara;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.339-344
    • /
    • 2014
  • An offshore wind power plant (WPP) is very expensive and different from an onshore wind power system in many ways. There has been a continuous increase in the capacity of the offshore WPPs. Therefore it is essential to analyze the feasibility and reliability of the offshore wind power to optimize their redundancy. Besides, it is very important to study a planning for grid interconnection of adjacent offshore WPPs. This paper proposes a economic evaluation method to interconnect with adjacent offshore substations in offshore wind power grid. Also, we suggest the probabilistic reliability method to calculate a probabilistic power output of the wind turbine and a cost of the expected energy not supplied that is used as the reliability index of the power system.

A Study on Evaluation of Optimal Replacement Period by Reliability Prediction for the Door Control Relay of EMU (전동차 출입문제어 계전기의 신뢰도예측을 통한 적정 교체주기 연구)

  • Han, Jaehyun;Kim, JongWoon;Koo, JeongSeo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.7
    • /
    • pp.34-40
    • /
    • 2014
  • In this paper, we want to know the optimal replacement cycle(time) for this study was performed. The optimal preventive replacement age can be fond by finding the value of time that minimizes the cost function(model of Barlow and Jardine). In addition, The reliability of the relay according to the service environment were studied. The use of the exchange relay period is longer, and maintenance cost rate(per hour) may increase, and also the reliability may cause a decline. In addition, considering the preventive maintenance and purchase order, a representative relay(RAX-L440-A type) life was calculated.

Study on Reserve Requirement for Wind Power Penetration based on the Cost/Reliability Analysis

  • Shin, Je-Seok;Kim, Jin-O;Bae, In-Su
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1397-1405
    • /
    • 2017
  • As the introduction of wind power is steadily increasing, negative effects of wind power become more important. To operate a power system more reliable, the system operator needs to recognize the maximum required capacity of available generators for a certain period. For recognizing the maximum capacity, this paper proposes a methodology to determine an optimal reserve requirement considering wind power, for the certain period in the mid-term perspective. As wind speed is predicted earlier, the difference of the forecasted and the actual wind speed becomes greater. All possible forecast errors should be considered in determining optimal reserve, and they are represented explicitly by the proposed matrix form in this paper. In addition, impacts of the generator failure are also analyzed using the matrix form. Through three main stages which are the scheduling, contingency and evaluation stages, costs associated with power generation, reserve procurement and the usage, and the reliability cost are calculated. The optimal reserve requirement is determined so as to minimize the sum of these costs based on the cost/reliability analysis. In case study, it is performed to analyze the impact of wind power penetration on the reserve requirement, and how major factors affect it.

PSEUDO-RELIABILITY MODEL OF COMBAT TANK SYSTEM

  • Lie, Chang-Hoon
    • Journal of the military operations research society of Korea
    • /
    • v.3 no.1
    • /
    • pp.137-150
    • /
    • 1977
  • The effectiveness of an actual combat tank system is analyzed. A measure of effectiveness which includes performance and reliability called pseudo-reliability is introduced. A model is introduced to optimize the design of the system in which the system pseudo-reliability is maximized subject to cost constraint. This model is a nonlinear programming problem and is solved by the sequential unconstrained minimization technique (SUMT). A numerical exampl with actual data from the test evaluation of five combat tanks is used to illustrate the model.

  • PDF

Reliability Evaluation for Photovoltaic Modules (태양전지 모듈의 신뢰성 평가)

  • Tanaka, Hirokazu;Kim, Keun-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.2
    • /
    • pp.1-5
    • /
    • 2012
  • Long-term reliability of Si photovoltaic modules is a crucial issue for the cost-reduction on the power-supply system. To elevate this reliability, several environmental tests have been created as qualification and certification procedures. This paper gives an overview about recent researches of reliability tests for Si photovoltaic modules.

A Model for Man-Machine System Evaluation (II) (인간 - 기계시스템의 평가모델 (II))

  • 이상도;하정진;정중희;이동춘
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.9 no.13
    • /
    • pp.17-22
    • /
    • 1986
  • Man-machine system is an integrated total system which is linked by functions of man and machine, and the value of the system is determined by its compatability. And it is able to evaluate the system value on the aspects of utility, availability, and cost benefit. The authors previously represented the methodology of system utility using transfer functions, and this paper successively discusses the reliability of man-machine system. The reliability estimation and evaluation methodologies are briefly mentioned, and some examples are shown in this paper.

  • PDF

Optimal Release Time of Switching Software and Evolution of Reliability Based on Reliability Indicator (신뢰성 평가척도를 중심으로 한 교환 소프트웨어 최적 배포 시기 결정 및 신뢰도 평가)

  • Lee, Jae-Gi;Sin, Sang-Gwon;Hong, Seong-Baek
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.3
    • /
    • pp.615-621
    • /
    • 1999
  • On the aspect of on-time and development resource use, it is very important to predict the software release time during the software development process. In this paper, we present the optimal release problem based on the evaluation indicator and cost evaluation. And also we show the optimal release point considered with both of them. We applied the Exponential Software Reliability Growth Model(E-SRGM) and Testing-effort dependent Software Reliability Growth Model(Te-SRGM) and decided the software release time according to software reliability indicator. As a result of two models comparison, we verify the Te-SRGM is more adopted in our switching system software.

  • PDF

Evaluation Algorithm of Interruption Cost in Distribution Systems Interconnected with Dispersed Storage and Generation Systems (분산형전원이 도입된 배전계통에서의 정전비용산출 알고리즘에 관한 연구)

  • Rho, Dae-Seok;Choi, Jae-Suk;Cha, Jun-Min;Kim, Deok-Young
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.82-84
    • /
    • 2000
  • This paper deals with a evaluation algorithm of interruption cost in distribution systems in the case where Dispersed Storage and Generation (DSG) systems are interconnected with the distribution systems. If DSG systems are operated as the function of the load levelling in distribution systems at the normal conditions and as the uninterruptible power supply in fault areas at the emergency conditions, the reliability improvement of the distribution systems can be expected. In other words, the benefit can be represented by the cost avoiding interruption according to the operation of DSG systems when a fault is occurred. Therefore, this paper presents the evaluation algorithm for interruption cost in order to evaluate the benefit for the uninterruptible power supply of DSG systems in a quantitative manner.

  • PDF