• Title/Summary/Keyword: relaxation time relaxation

Search Result 1,080, Processing Time 0.024 seconds

Theoretical Investigation of the Vibrational Relaxation of NO(${\upsilon}=1-7$) in Collisions with $O_{2}\;and\;N_{2}$

  • Jongbaik Ree
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.47-52
    • /
    • 1993
  • The vibrational relaxation rate constants of NO(v = 1-7) by $O_2\;and\;N_2$ have been calculated in the temperature range of 300-1000 K using the solution of the time-dependent Schrodinger equation. The calculated relaxation rate constants by $O_2$ increase monotonically with the vibrational energy level v, which is compatible with the experimental data, while those by $N_2$ are nearly independent of v in the range of $3.40 {\pm}1.60{\times}10_{-16} cm^3$/molecule-sec at 300 K. Those for NO(v) + $N_2$ are about 2-3 orders of magnitude smaller than those for NO(v) + $O_2$, because the latter is an exothermic processes while the former an endothermic. Relaxation processes can be interpreted by single-quantum V-V transition. The contributions of V-T/R transition and double-quantum V-V transition to the relaxation are negligible over the entire temperature range.

Solvent Effect on Stress Relaxation of PET Filament Fibers and Self Diffusion of Crystallites

  • Nam Jeong Kim;Eung Ryul Kim;Sang Joon Hahn
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.5
    • /
    • pp.468-473
    • /
    • 1991
  • Viscoelastic properties of PET filament fibers on stress relaxation were investigated in the solvents of $H_2$O, 0.05% NaOH and 50% DMF using an Instron (UTM4-100 Tensilon) with solvent chamber. The theoretical stress relaxation equation derived by applying the Ree-Eyring's hyperbolic sine law to dashpot of three element non-Newtonian model was applied to the experimental stress relaxation curves, and the model parameters $G_1,G_2$, ${\alpha}$ and ${\beta}$ were obtained. By analyzing temperature dependency of the relaxation time, the values of activation entropy, activation enthalpy and activation free energy for flow in PET filament fiber were evaluated, the activation free energy being about 25.7 kcal/mol. The self diffusion coefficient and hole distance were obtained from parameters ${\alpha}$, ${\beta}$ and crystallite size in order to study the self diffusion and the orientation of crystallites in amorphous region and the effect of solvent.

The Development of Theoretical Model for Relaxation Mechanism of Sup erparamagnetic Nano Particles (초상자성 나노 입자의 자기이완 특성에 관한 이론적 연구)

  • 장용민;황문정
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.1
    • /
    • pp.39-46
    • /
    • 2003
  • Purpose : To develop a theoretical model for magnetic relaxation behavior of the superparamagnetic nano-particle agent, which demonstrates multi-functionality such as liver- and lymp node-specificity. Based on the developed model, the computer simulation was performed to clarify the relationship between relaxation time and the applied magnetic field strength. Materials and Methods : The ultrasmall superparamagnetic iron oxide (USPIO) was encapsulated with biocompatiable polymer, to develop a relaxation model based on outsphere mechanism, which was resulting from diffusion and/or electron spin fluctuation. In addition, Brillouin function was introduced to describe the full magnetization by considering the fact that the low-field approximation, which was adapted in paramagnetic case, is no longer valid. The developed model describes therefore the T1 and T2 relaxation behavior of superparamagnetic iron oxide both in low-field and in high-field. Based on our model, the computer simulation was performed to test the relaxation behavior of superparamagnetic contrast agent over various magnetic fields using MathCad (MathCad, U.S.A.), a symbolic computation software. Results : For T1 and T2 magnetic relaxation characteristics of ultrasmall superparamagnetic iron oxide, the theoretical model showed that at low field (<1.0 Mhz), $\tau_{S1}(\tau_{S2}$, in case of T2), which is a correlation time in spectral density function, plays a major role. This suggests that realignment of nano-magnetic particles is most important at low magnetic field. On the other hand, at high field, $\tau$, which is another correlation time in spectral density function, plays a major role. Since $\tau$ is closely related to particle size, this suggests that the difference in R1 and R2 over particle sizes, at high field, is resulting not from the realignment of particles but from the particle size itself. Within normal body temperature region, the temperature dependence of T1 and T2 relaxation time showed that there is no change in T1 and T2 relaxation times at high field. Especially, T1 showed less temperature dependence compared to T2. Conclusion : We developed a theoretical model of r magnetic relaxation behavior of ultrasmall superparamagnetic iron oxide (USPIO), which was reported to show clinical multi-functionality by utilizing physical properties of nano-magnetic particle. In addition, based on the developed model, the computer simulation was performed to investigate the relationship between relaxation time of USPIO and the applied magnetic field strength.

  • PDF

Electrical Relaxation in Silica Glasses and Nonlinearity in Electrical Conductivity (실리카 유리의 전기이완 특성과 비선형적 전기전도도)

  • 신동욱
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.923-929
    • /
    • 1999
  • The cause of optical nonlinearity induced in thermally poled silica glass is believed to be the space charge polarization. Since the second order optical nonlinearity (electro-optic effect) can be used in optical switches the optical nonlinearity in silica glass has drawn a large attention. Space charge polarization occurs when an ionic conducting material is subjected to dc electric field by the blocking electrode. Thermal poling performed to induce the optical nonlinearity in silica glass is basically identical to the process generating space charge polarization. As a first step to understand the mechanism of space charge polarization in silica glass hence the induced optical nonlinearity the absorption currents as functions of time were measured for various types of silica glasses and analyzed by the theory of space charge polarization. It was found that the electrical relaxation exhibited a step by the space charge polarization in the relatively long time range and dielectric loss peak showed a maximum at a specific temperature which is depending on type of silica glass. It was turned out that this relaxation might be a cause of nonlinearity in electrical conductivity of silica glass.

  • PDF

Dielectric Study of Methyl Acrylate-Alcohol Mixtures Using Time Domain Reflectometry

  • Dharmalingam, K.;Ramachandran, K.;Sivagurunathan, P.;Prabhakar , B.;Khirade, P.W.;Mehrotra, S.C.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.2040-2044
    • /
    • 2006
  • Dielectric studies of methyl acrylate with 1-propanol, 1-butanol, 1-heptanol and 1-octanol binary mixtures have been carried out over the frequency range from 10 MHz to 10 GHz at temperatures of 283, 293, 303 and 313 K using Time Domain Reflectometry (TDR) for various concentrations. The Kirkwood correlation factor and excess inverse relaxation time were determined and discussed to yield information on the molecular structure and dynamics of the mixture. The values of the static dielectric constant, relaxation time and the Kirkwood correlation factor decrease with increased concentration of methyl acrylate in alcohol. The Bruggman plot shows a non-linearity of the curves for all the systems studied indicates the heterointeraction which may be due to hydrogen bonding of the OH group of alcohol with C=O of the methyl acrylate. The excess inverse relaxation time values are negative for all the systems at all the temperatures indicates that the solute-solvent interaction hinders the rotation of the dipoles of the system.

Vibrational Relaxation and Fragmentation in Icosahedral (Ar2+)Ar12 Clusters

  • Ree, Jongbaik;Kim, Yoo Hang;Shin, Hyung Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2774-2780
    • /
    • 2014
  • A dynamics study of relaxation and fragmentation of icosahedral argon cluster with a vibrationally excited $Ar_2^+$ (${\nu}$) is presented. Local translation is shown to be responsible for inducing energy flow from the embedded ion to host atoms and fragmentation of the cluster consisting of various low frequency modes. The total potential energy of $(Ar_2^+)Ar_{12}$ is formulated using a building-up procedure of host-guest and host-host interactions. The time dependence of ion-to-host energy transfer is found to be tri-exponential, with the short-time process of ~100 ps contributing most to the overall relaxation process. Relaxation timescales are weakly dependent on both temperature (50-300 K) and initial vibrational excitation (${\nu}$ = 1-4). Nearly 27% of host atoms in the cluster with $Ar_2^+$ (${\nu}$ = 1) fragment immediately after energy flow, the extent increasing to ~43% for ${\nu}$ = 4. The distribution of fragmentation products of $(Ar_2^+)Ar_{12}{\rightarrow}(Ar_2^+)Ar_n+(12-n)Ar$ are peaked around $(Ar_2^+)Ar_8$. The distribution of dissociation times reveals fragmentation from one hemisphere dominates that from the other. This effect is attributed to the initial fragmentation causing a sequential perturbation of adjacent atoms on the same icosahedral five-atom layer.

Feedback Semi-Definite Relaxation for near-Maximum Likelihood Detection in MIMO Systems (MIMO 시스템에서 최적 검출 기법을 위한 궤환 Semi-Definite Relaxation 검출기)

  • Park, Su-Bin;Lee, Dong-Jin;Byun, Youn-Shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12C
    • /
    • pp.1082-1087
    • /
    • 2008
  • Maximum Likelihood (ML) detection is well known to exhibit better bit-error-rate (BER) than many other detectors for multiple-input multiple-output (MIMO) channel. However, ML detection has been shown a difficult problem due to its NP-hard problem. It means that there is no known algorithm which can find the optimal solution in polynomial-time. In this paper, Semi-Definite relaxation (SDR) is iteratively applied to ML detection problem. The probability distribution can be obtained by survival eigenvector out of the dominant eigenvalue term of the optimal solution. The probability distribution which is yielded by SDR is recurred to the received signal. Our approach can reach to nearly ML performance.

Preparation of Pseudotetragonal $ZrO_{0.75}S$ and Its Electric Responses on Temperature and Frequency Related to Microstructural Relaxation

  • Ro, Yeong A;Kim, Seong Jin;Lee, Yu Gyeong;Kim, Ja Hyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.11
    • /
    • pp.1231-1235
    • /
    • 2001
  • Pseudotetragonal ZrO0.75S whose space group is P212121 was synthesized and the cell dimensions were a=5.110(2) $\AA$, b=5.110(7) $\AA$, and c=5.198(8) $\AA.$ The space group P212121 seems to be resulted from lowering the symmetry of cubic ZrOS structure with P213 space group by lattice distortion due to the oxygen defects. In the distorted structure, bond shortening between metal-nonmetal by reduction of cell volume and alternation of Zr-Zr distance were observed. Dielectric constant and loss data of the bulk material in temperature range -170 to 20 $^{\circ}C$ and frequency range 50 Hz to 1 MHz showed that there was dielectric transition at around -70 $^{\circ}C$ originated from the relaxation of Zr-S segment. Comparing with ZrO2 exhibited the dielectirc constants, 9.0 at room temperature, ZrO0.75S showed high dielectric constant, k = 200.2 at 100 kHz. The activation energy of relaxation time due to dielectric relaxation of Zr-S was 0.47 eV (11.3 kcal/mole). According to the impedance spectra, ZrO0.75S showed more parallel circuit character between the resistance and capacitance components at the temperature (-70 $^{\circ}C)$ that the Zr-S dielectric relaxation was observed.

Stress Relaxation Test of Granite under Water-Saturated Triaxial Condition (화강암의 응력완화현상에 관한 수침삼축시험)

  • 서용석
    • The Journal of Engineering Geology
    • /
    • v.10 no.3
    • /
    • pp.217-223
    • /
    • 2000
  • Microcracks that consist of quarry planes of granite are an essential factor affecting the long-term behavior of granite. In this paper, fine-grained granite distributed in the Tsukuba area of Japan was selected and microcracks were measured by using scanline method. In addition, a new relaxation testing equipment was developed to carry out stress relaxation test under water-saturated triaxial condition. Based on the relaxation test results with the initial stress level of 75%, the axial stress is decreased by 39%-49% just after the start of the tests, and the totally relaxed stress is 10∼24 MPa in 190 ERT (Elapsed relaxation time, hour). In addition, the relaxed stress is increased with the density of cracks which are parallel to axial load direction.

  • PDF

Computational Study of Hypersonic Real Gas Flows Over Cylinder Using Energy Relaxation Method (에너지 완화법을 이용한 실린더 주위의 극초음속 실제기체 유동에 관한 수치해석적 연구)

  • Nagdewe, Suryakant;Kim, H.D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.216-217
    • /
    • 2008
  • In recent years, scientific community has found renewed interest in hypersonic flight research. These hypersonic vehicles undergo severe aero-thermal environment during their flight regimes. During reentry and hypersonic flight of these vehicles through atmosphere real gas effects come into play. The analysis of such hypersonic flows is critical for proper aero-thermal design of these vehicles. The numerical simulation of hypersonic real gas flows is a very challenging task. The present work emphasizes numerical simulation of hypersonic flows with thermal non-equilibrium. Hyperbolic system of equations with stiff relaxation method are identified in recent literature as a novel method of predicting long time behaviour of systems such as gas at high temperature. In present work, Energy Relaxation Method (ERM) has been considered to simulate the real gas flows. Navier-Stokes equations A numerical scheme Advection Upstream Splitting Method (AUSM) has been selected. Navier-Stokes solver along with relaxation method has been used for the simulation of real flow over a circular cylinder. Pressure distribution and heat flux over the surface of cylinder has been compared with experiment results of Hannemann. Present heat flux results over the cylinder compared well with experiment. Thus, real gas effects in hypersonic flows can be modeled through energy relaxation method.

  • PDF