• Title/Summary/Keyword: relative synonymous codon usage (RSCU)

Search Result 4, Processing Time 0.016 seconds

Studies on Synonymous Codon and Amino Acid Usage Biases in the Broad-Host Range Bacteriophage KVP40

  • Sau Keya;Gupta Sanjib Kumar;Sau Subrata;Mandal Subhas Chandra;Ghosh Tapash Chandra
    • Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.58-63
    • /
    • 2007
  • In this study, the relative synonymous codon and amino acid usage biases of the broad-host range phage, KVP40, were investigated in an attempt to understand the structure and function of its proteins/protein-coding genes, as well as the role of its tRNAs. Synonymous codons in KVP40 were determined to be AT-rich at the third codon positions, and their variations are dictated principally by both mutational bias and translational selection. Further analysis revealed that the RSCU of KVP40 is distinct from that of its Vibrio hosts, V. cholerae and V. parahaemolyticus. Interestingly, the expression of the putative highly expressed genes of KVP40 appear to be preferentially influenced by the abundant host tRNA species, whereas the tRNAs expressed by KVP40 may be required for the efficient synthesis of all its proteins in a diverse array of hosts. The data generated in this study also revealed that KVP40 proteins are rich in low molecular weight amino acid residues, and that these variations are influenced primarily by hydropathy, mean molecular weight, aromaticity, and cysteine content.

Insights into factors affecting synonymous codon usage in apple mosaic virus and its host adaptability

  • Pourrahim, R.;Farzadfar, Sh.
    • Journal of Plant Biotechnology
    • /
    • v.49 no.1
    • /
    • pp.46-60
    • /
    • 2022
  • The genetic variability and population structure of apple mosaic virus (ApMV) have been studied; however, synonymous codon usage patterns influencing the survival rates and fitness of ApMV have not been reported. Based on phylogenetic analyses of 52 ApMV coat protein (CP) sequences obtained from apple, pear, and hazelnut, ApMV isolates were clustered into two groups. High molecular diversity in GII may indicate their recent expansion. A constant and conserved genomic composition of the CP sequences was inferred from the low codon usage bias. Nucleotide composition and relative synonymous codon usage (RSCU) analysis indicated that the ApMV CP gene is AU-rich, but G- and U-ending codons are favored while coding amino acids. This unequal use of nucleotides together with parity rule 2 and the effective number of codon (ENC) plots indicate that mutation pressure together with natural selection drives codon usage patterns in the CP gene. However, in this combination, selection pressure plays a more crucial role. Based on principal component analysis plots, ApMV seems to have originated from apple trees in Europe. However, according to the relative codon deoptimization index and codon adaptation index (CAI) analyses, ApMV exhibited the greatest fitness to hazelnut. As inferred from the results of the similarity index analysis, hazelnut has a major role in shaping ApMV RSCU patterns, which is consistent with the CAI analysis results. This study contributes to the understanding of plant virus evolution, reveals novel information about ApMV evolutionary fitness, and helps find better ApMV management strategies.

Synonymous Codon Usage Analysis of the Mycobacteriophage Bxz1 and Its Plating Bacteria M. smegmatis: Identification of Highly and Lowly Expressed Genes of Bxz1 and the Possible Function of Its tRNA Species

  • Sahu, Keya;Gupta, Sanjib Kumar;Ghosh, Tapash Chandra;Sau, Subrata
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.487-492
    • /
    • 2004
  • The extent of codon usage in the protein coding genes of the mycobacteriophage, Bxz1, and its plating bacteria, M. smegmatis, were determined, and it was observed that the codons ending with either G and / or C were predominant in both the organisms. Multivariate statistical analysis showed that in both organisms, the genes were separated along the first major explanatory axis according to their expression levels and their genomic GC content at the synonymous third positions of the codons. The second major explanatory axis differentiates the genes according to their genome type. A comparison of the relative synonymous codon usage between 20 highly- and 20 lowly expressed genes from Bxz1 identified 21 codons, which are statistically over represented in the former group of genes. Further analysis found that the Bxz1- specific tRNA species could recognize 13 out of the 21 over represented synonymous codons, which incorporated 13 amino acid residues preferentially into the highly expressed proteins of Bxz1. In contrast, seven amino acid residues were preferentially incorporated into the lowly expressed proteins by 10 other tRNA species of Bxz1. This analysis predicts for the first time that the Bxz1-specific tRNA species modulates the optimal expression of its proteins during development.

A Study on the Genomic Patterns of SARS coronavirus using Bioinformtaics Techniques (바이오인포매틱스 기법을 활용한 SARS 코로나바이러스의 유전정보 연구)

  • Ahn, Insung;Jeong, Byeong-Jin;Son, Hyeon S.
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.522-526
    • /
    • 2007
  • Since newly emerged disease, the Severe Acute Respiratory Syndrome (SARS), spread from Asia to North America and Europe rapidly in 2003, many researchers have tried to determine where the virus came from. In the phylogenetic point of view, SARS virus has been known to be one of the genus Coronavirus, but, the overall conservation of SARS virus sequence was not highly similar to that of known coronaviruses. The natural reservoirs of SARS-CoV are not clearly determined, yet. In the present study, the genomic sequences of SARS-CoV were analyzed by bioinformatics techniques such as multiple sequence alignment and phylogenetic analysis methods as well multivariate statistical analysis. All the calculating processes, including calculations of the relative synonymous codon usage (RSCU) and other genomic parameters using 30,305 coding sequences from the two genera, Coronavirus, and Lentivirus, and one family, Orthomyxoviridae, were performed on SMP cluster in KISTI, Supercomputing Center. As a result, SARS_CoV showed very similar RSCU patterns with feline coronavirus on the both axes of the correspondence analysis, and this result showed more agreeable results with serological results for SARS_CoV than that of phylogenetic result itself. In addition, SARS_CoV, human immunodeficiency virus, and influenza A virus commonly showed the very low RSCU differences among each synonymous codon group, and this low RSCU bias might provide some advantages for them to be transmitted from other species into human beings more successfully. Large-scale genomic analysis using bioinformatics techniques may be useful in genetic epidemiology field effectively.

  • PDF