• 제목/요약/키워드: relative strength of effects

검색결과 217건 처리시간 0.031초

지압각 감소이론을 이용한 높은마디면적 철근의 부착강도 해석 (Bond Strength Analysis of High Relative Rib Area Bars Using Decreasing Bearing Angle Theory)

  • 양승열;서동민;박영수;홍건호;최완철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.185-188
    • /
    • 2005
  • Bond between reinforcing bar and surrounding concrete is supposed to transfer load safely in the process of design of reinforced concrete structures. Bond strength of ribbed reinforcing bars tends to split concrete cover, by wedging action, or shear the concrete in front of the ribs. In this study, using a reducing bearing angle theory, bond strengths of beam end specimen are predicted. Values of bond strength obtained using the analytical model are in good agreement with the bond test results. The analytical model provides insight into bond mechanism and the effects of bearing angle on the bond strength of deformed bars to concrete.

  • PDF

파티클보드의 박리(剝離) 및 인장(引張)에 있어서의 파괴인성치(破壞靭性値)에 관(關)한 연구(硏究) (Studies on Fracture Toughness in Internal Bond and Tension of Particleboard)

  • 김한석;이필우
    • Journal of the Korean Wood Science and Technology
    • /
    • 제18권3호
    • /
    • pp.6-16
    • /
    • 1990
  • The objectives of this study were to investigate the relative effects of specific gravity and particle size on internal bond and tensile strengths and fracture toughness of particleboard and to compare mechanical strength with fracture toughness. The particleboard was manufactured with three different particle sizes at specific gravity levels of 0.6, 0.7, and 0.8 with a resin content of 10% based on oven dry weight. The results were summarized as follows: 1. Internal bond strength. fracture toughness in internal bond test. maximum tensile strength, and fracture toughness in tension test increased with the increase of specific gravity of particleboard. 2. As partcle size increased, internal bond strength, fracture toughness. maximum tensile strength. and fracture toughness in tension test increased. 3. The maximum tensile strength and fracture toughness appeared to be in a direct relationship, and then maximum tensile strength could be used for predicition of fracture toughness for tension test. 4. The fracture toughness in internal bond test was somewhat independent on induced crack length.

  • PDF

Strain-rate effects on interaction between Mode I matrix crack and inclined elliptic inclusion under dynamic loadings

  • Li, Ying;Qiu, Wan-Chao;Ou, Zhuo-Cheng;Duan, Zhuo-Ping;Huang, Feng-Lei
    • Structural Engineering and Mechanics
    • /
    • 제44권6호
    • /
    • pp.801-814
    • /
    • 2012
  • The strain rate effects on the interaction between a Mode I matrix crack and an inclined elliptic matrix-inclusion interface under dynamic tensile loadings were investigated numerically, and the results are in agreement with previous experimental data. It is found, for a given material system, that there are the first and the second critical strain rates, by which three kinds of the subsequent crack growth patterns can be classified in turn with the increasing strain rate, namely, the crack deflection, the double crack mode and the perpendicular crack penetration. Moreover, such a crack deflection/penetration behavior is found to be dependent on the relative interfacial strength, the inclined angle and the inclusion size. In addition, it is shown that the so-called strain rate effect on the dynamic strength of granule composites can be induced directly from the structural dynamic response of materials, not be entirely an intrinsic material property.

Constitutive Modeling of Confined Concrete under Concentric Loading

  • Lee, Cha-Don;Park, Ki-Bong;Cha, Jun-Sil
    • KCI Concrete Journal
    • /
    • 제13권1호
    • /
    • pp.69-78
    • /
    • 2001
  • The inelastic behavior of a reinforced concrete columns is influenced by a number of factors : 1) level of axial load, 2) tie spacing, 3) volumetric ratio of lateral steel, 4) concrete strength, 5) distribution of longitudinal steel, 6) strength of lateral steel, 7) cover thickness, 8) configuration of lateral steel, 9) strain gradient, 10) strain rate, 11) the effectively confined concrete core area, and 12) amount of longitudinal steel. A new constitutive model of a confined concrete is suggested in order to investigate the nonlinear behavior of the reinforced concrete columns under concentric loading. The developed constitutive model for the confined concrete takes into account the effects of effectively confined area as well as the horizontal and longitudinal distributions of the confining pressures. None of the existing models incorporated these two main effects at the same time. A total of different six constitutive models for the behavior of the confined concrete under concentric compression were compared with the sixty-one test results reported by different researchers. The superiority of the developed model in its accuracy is demonstrated by evaluating the error function, which compares the weighted averages for the sum of squared relative differences in peak compressive strength and corresponding strain, stress at strain equal to 0.015, and total area under stress-strain curve up to strain equal to 0.015.

  • PDF

구자를 장기간(長期間) 투여(投與) 했을 때 생쥐의 근피로(筋疲勞)와 근력(筋力)에 미치는 영향(影響) (Long Term Effect of Allii tuberosi semen on Muscle Fatigue and Muscular Strength)

  • 조정훈;장준복;이경섭;이창훈
    • 대한한방부인과학회지
    • /
    • 제20권3호
    • /
    • pp.81-90
    • /
    • 2007
  • Purpose: This study was conducted to investigate the muscle anti-fatigue effects of Allii tuberosi semen after long term administration. Materials and Methods: 4-6 weeks old ICR mice were used in this study and we administered the water soluble extracts of Allii tuberosi semen in the concentration of 1, 10 and 100mg/0.3ml to each 5 mice (ATS group) and same volume of normal saline was administered to 5 mice (control group) once a day for 90 or 120 days. After the administration we performed the swimming exercise test and the grip strength test. And we measured the concentration of glucose and the activity of lactate dehydrogenase in plasma regarded as biochemical indicator related with the muscular fatigue. Results: In swimming exercise test, all ATS groups showed increased time compared with relative control group after 90 days administration. But after 120 days adminstration 10 and 100mg/0.3ml ATS groups showed increased results. In grip strength test, all ATS group increased grip strength after 90 days administration and 10mg/0.3ml ATS group showed increased result after 120 days administration. All the results of plasma glucose didn't showed statistically significant difference after 90 and 120 days administration. In the plasma concentration of activity level of lactate dehydrogenase, 1mg/0.3ml and 10mg/0.3ml ATS groups showed decreased concentration compared with relative control group after 90 days administration. But after 120 days adminstration 1mg/0.3ml ATS groups showed decreased results. Conclusion: From this study we could find the anti-fatigue effect of Allii tuberosi semen in the muscle strength related test.

  • PDF

LPS - SiC 세라믹스의 굽힘강도 특성에 미치는 미시조직 영향 (Microstructure Effects on Bending Strength Characteristics of LPS - SiC Ceramic)

  • 윤한기;정헌채
    • 한국해양공학회지
    • /
    • 제20권5호
    • /
    • pp.77-81
    • /
    • 2006
  • In this study, monolithic liquid phase sintered SiC (LPS-SiC) was made by the hot pressing method with nano-SiC powder, whose particle size is 30 nm and less on the average. Alumina ($Al_{2}O_{3}$), yttria ($Y_{2}O_{3}$), and silica ($S_{i}O_{2}$) were used for sintering additives. To investigate the effects of $S_{i}O_{2}$, the $Al_{2}O_{3}/Y_{2}O_{3}$ composition was fixed and the ratio of $S_{i}O_{2}$ was changed, with seven different ratios tested. And to investigate the effects of the sintering temperature, the sintering temperature was changed, with $1760^{\circ}C,\;1780_{\circ}C$, and $1800_{\circ}C$ being used with a $S_{i}O_{2}$ ratio of 3 wt%. The materials were sintered for 1 hour at $1760^{\circ}C,\;1780^{\circ}C$ and $1800^{\circ}C$ under a pressure of 20 MPa. The effects on sintering from the sintering system used, as well as from the composition of the sintering additives, were investigated by density measurements. Mechanical properties, such as flexural strength, were investigated to ensure the optimum conditions for a matrix of SiCf/SiC composites. Sintered densityand the flexural strength of fabricated LPS-SiC increased with an increase in sintering temperature. Particularly, the relative density of a sintered body at $1800^{\circ}C$ with a non-content of $S_{i}O_{2}$, a specimen of AYSO-1800, was 95%. Also, flexural strength was about 750MPa.

Chaotic phenomena in the organic solar cell under the impact of small particles

  • Jing, Pan;Zhe, Jia;Guanghua, Zhang
    • Steel and Composite Structures
    • /
    • 제46권1호
    • /
    • pp.15-31
    • /
    • 2023
  • Organic solar cells utilized natural polymers to convert solar energy to electricity. The demands for green energy production and less disposal of toxic materials make them one of the interesting candidates for replacing conventional solar cells. However, the different aspects of their properties including mechanical strength and stability are not well recognized. Therefore, in the present study, we aim to explore the chaotic responses of these organic solar cells. In doing so, a specific type of organic solar cell constructed from layers of material with different thicknesses is considered to obtain vibrational and chaotic responses under different boundaries and initial conditions. A square plate structure is examined with first-order shear deformation theory to acquire the displacement field in the laminated structure. The bounding between different layers is considered to be perfect with no sliding and separation. On the other hand, nonlocal elasticity theory is engaged in incorporating the structural effects of the organic material into calculations. Hamilton's principle is adopted to obtain governing equations with regard to boundary conditions and mechanical loadings. The extracted equations of motion were solved using the perturbation method and differential quadrature approach. The results demonstrated the significant effect of relative glass layer thickness on the chaotic behavior of the structure with higher relative thickness leading to less chaotic responses. Moreover, a comprehensive parameter study is presented to examine the effects of nonlocality and relative thicknesses on the natural frequency of square organic solar cell structure.

무가압 소결법에 의한 $\beta$-SiC-$ZrB_2$편(偏) 도전성(導電性) 복합체(複合體) 미치는 기공(氣孔)의 영향 (Effects of Porosity on the Properties of Pressureless Sintered $\beta$-SiC-$ZrB_2$ Electroconductive Ceramic Composites)

  • 주진영;권주성;신용덕
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.311-313
    • /
    • 1997
  • The effects of porosity on the pressureless sintered $\beta$-SiC-$ZrB_2$ composites with $Al_2O_3$ additions(4, 8, 12wt.%) under argon atmosphere were investigated. Relative density of $\beta$-SiC-$ZrB_2$ composites were decreased with the $Al_2O_3$ content. The relative density and fracture toughness of $\beta$-SiC-$ZrB_2$ with 4wt% $Al_2O_3$ are 93.2%, $1.323MPa{\cdot}m^{1/2}$ respectively. The Vicker's hardness and flexural strength of $\beta$-SiC-$ZrB_2$ with 12wt.% $Al_2O_3$ are 0.492GPa, 261MPa respectively. Fracture toughness of $\beta$-SiC-$ZrB_2$ composites are directly proportional to relative density.

  • PDF

오디와 누에 섭취가 rats의 저항성 운동에 따른 근육 증가에 미치는 영향 (The effects of the mulberry and silkworm intake on muscle increase of rats for resistance exercise)

  • 양성준;김창용;이조병;강성선;이종진
    • 한국잠사곤충학회지
    • /
    • 제51권2호
    • /
    • pp.123-129
    • /
    • 2013
  • The purpose of this study is to investigate the effects of supplementation of mulberry powder, mulberry extract and silkworm powder during the 8 weeks of resistance exercise on muscle increase of rats. Fifty males, Sprague-Dawley rat, were randomly divided into 5 groups: CON(control group, n = 10), REG(resistance exercise group, n = 10), MP REG(mulberry powder intake and resistance exercise group, n = 10), ME REG(mulberry extract intake and resistance exercise group, n = 10) and SP REG(silkworm powder intake and resistance exercise group, n = 10). After climbing the ladder without weights during the 1 week of adaptation period, the rats in the resistance exercise group were trained to climb a 0.98-m vertical(80 degree incline) ladder with weights in their tail during 7 weeks(10 times each day, 2 days per week). After exercise, the skeletal muscle was extracted from the flexor hallucis longus. The absolute weight of skeletal muscle was measured by the electronic balance and the relative weight of skeletal muscle about the weight was calculated. The strength and density of legs muscle were analyzed by the computed tomography scan. After 8 weeks of resistance exercise, the absolute weight of skeletal muscle wasn't significant, but it increased in MP REG 8%, ME REG 8% and SP REG 10% compared to REG. The relative weight of skeletal muscle increased significantly in SP REG compared to REG (p < 0.05). Additionally, there was a significant increase of density and strength of the forelegs in SP REG compared to CON (p < 0.05). However, there was no significant increase of density and strength of the hind legs. In conclusion, regular resistance exercise made rats muscle increase and there was more muscle increase effected by providing silkworm.

Experimental assessment on flexural behavior of demountable steel-UHPC composite slabs with a novel NPR steel plate

  • Jin-Ben Gu;Jun-Yan Wang;Yi Tao;Qing-Xuan Shi
    • Steel and Composite Structures
    • /
    • 제49권4호
    • /
    • pp.381-392
    • /
    • 2023
  • This study experimentally investigates the flexural behavior of steel-UHPC composite slabs composed of an innovative negative Poisson's ratio (NPR) steel plate and Ultra High Performance Concrete (UHPC) slab connected via demountable high-strength bolt shear connectors. Eight demountable composite slab specimens were fabricated and tested under traditional four-point bending method. The effects of loading histories (positive and negative bending moment), types of steel plate (NPR steel plate and Q355 steel plate) and spacings of high-strength bolts (150 mm, 200 mm and 250 mm) on the flexural behavior of demountable composite slab, including failure mode, load-deflection curve, interface relative slip, crack width and sectional strain distribution, were evaluated. The results revealed that under positive bending moment, the failure mode of composite slabs employing NPR steel plate was distinct from that with Q355 steel plate, which exhibited that part of high-strength bolts was cut off, part of pre-embedded padded extension nuts was pulled out, and UHPC collapsed due to instantaneous instability and etc. Besides, under the same spacing of high-strength bolts, NPR steel plate availably delayed and restrained the relative slip between steel plate and UHPC plate, thus significantly enhanced the cooperative deformation capacity, flexural stiffness and load capacity for composite slabs further. While under negative bending moment, NPR steel plate effectively improved the flexural capacity and deformation characteristics of composite slabs, but it has no obvious effect on the initial flexural stiffness of composite slabs. Meanwhile, the excellent crack-width control ability for UHPC endowed composite members with better durability. Furthermore, according to the sectional strain distribution analysis, due to the negative Poisson's ratio effect and high yield strength of NPR steel plate, the tensile strain between NPR steel plate and UHPC layer held strain compatibility during the whole loading process, and the magnitude of upward movement for sectional plastic neutral axis could be ignored with the increase of positive bending moment.