• 제목/요약/키워드: relative state estimation

검색결과 67건 처리시간 0.029초

확장형 칼만 필터를 이용한 인공위성 편대비행 상대 상태 추정 (Extended Kalman Filter Based Relative State Estimation for Satellites in Formation Flying)

  • 이영구;방효충
    • 제어로봇시스템학회논문지
    • /
    • 제13권10호
    • /
    • pp.962-969
    • /
    • 2007
  • In this paper, an approach is developed for relative state estimation of satellite formation flying. To estimate relative states of two satellites, the Extended Kalman Filter Algorithm is adopted with the relative distance and speed between two satellites and attitude of satellite for measurements. Numerical simulations are conducted under two circumstances. The first one presents both chief and deputy satellites are orbiting a circular reference orbit around a perfectly spherical Earth model with no disturbing acceleration, in which the elementary relative orbital motion is taken into account. In reality, however, the Earth is not a perfect sphere, but rather an oblate spheroid, and both satellites are under the effect of $J_2$ geopotential disturbance, which causes the relative distance between two satellites to be on the gradual increase. A near-Earth orbit decays as a result of atmospheric drag. In order to remove the modeling error, the second scenario incorporates the effect of the $J_2$ geopotential force, and the atmospheric drag, and the eccentricity in satellite orbit are also considered.

V2V 통신을 이용한 상대 차량 상태 추정 알고리즘 개발 (Development of Target Vehicle State Estimation Algorithm Using V2V Communication)

  • 권우진;조아라;이경수
    • 자동차안전학회지
    • /
    • 제14권2호
    • /
    • pp.70-74
    • /
    • 2022
  • This paper describes the development of a target vehicle state estimation algorithm using vehicle-to-vehicle (V2V) communication. Perceiving the state of the target vehicle has great importance for successful autonomous driving and has been studied using various sensors and methods for many years. V2V communication has advantage of not being constrained by surrounding circumstances relative to other sensors. In this paper, we adopt the V2V signal for estimating the target vehicle state. Since applying only the V2V signal is improper by its low frequency and latency, the signal is used as additional measured data to improve the estimation accuracy. We estimate the target vehicle state using Extended Kalman filter (EKF); a point mass model was utilized in process update to predict the state of next step. The process update is followed by measurement update when ego vehicle receives V2V information. The proposed study evaluated state estimation by comparing input V2V information in an experiment where the ego vehicle follows the target vehicle behind it.

Vision-Based Relative State Estimation Using the Unscented Kalman Filter

  • Lee, Dae-Ro;Pernicka, Henry
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권1호
    • /
    • pp.24-36
    • /
    • 2011
  • A new approach for spacecraft absolute attitude estimation based on the unscented Kalman filter (UKF) is extended to relative attitude estimation and navigation. This approach for nonlinear systems has faster convergence than the approach based on the standard extended Kalman filter (EKF) even with inaccurate initial conditions in attitude estimation and navigation problems. The filter formulation employs measurements obtained from a vision sensor to provide multiple line(-) of(-) sight vectors from the spacecraft to another spacecraft. The line-of-sight measurements are coupled with gyro measurements and dynamic models in an UKF to determine relative attitude, position and gyro biases. A vector of generalized Rodrigues parameters is used to represent the local error-quaternion between two spacecraft. A multiplicative quaternion-error approach is derived from the local error-quaternion, which guarantees the maintenance of quaternion unit constraint in the filter. The scenario for bounded relative motion is selected to verify this extended application of the UKF. Simulation results show that the UKF is more robust than the EKF under realistic initial attitude and navigation error conditions.

A Failure Estimation Method of Steel Pipe Elbows under In-plane Cyclic Loading

  • Jeon, Bub-Gyu;Kim, Sung-Wan;Choi, Hyoung-Suk;Park, Dong-Uk;Kim, Nam-Sik
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.245-253
    • /
    • 2017
  • The relative displacement of a piping system installed between isolated and nonisolated structures in a severe earthquake might be larger when without a seismic isolation system. As a result of the relative displacement, the seismic risks of some components in the building could increase. The possibility of an increase in seismic risks is especially high in the crossover piping system in the buildings. Previous studies found that an elbow which could be ruptured by low-cycle ratcheting fatigue is one of the weakest elements. Fatigue curves for elbows were suggested based on component tests. However, it is hard to find a quantitative evaluation of the ultimate state of piping elbows. Generally, the energy dissipation of a solid structure can be calculated from the relation between displacement and force. Therefore, in this study, the ultimate state of the pipe elbow, normally considered as failure of the pipe elbow, is defined as leakage under in-plane cyclic loading tests, and a failure estimation method is proposed using a damage index based on energy dissipation.

거친 오차 추정과 미세 오차 추정을 활용한 블라인드 적응 알고리즘 (Blind Adaptation Algorithms Using Coarse Error Estimation and Fine Error Estimation)

  • 오길남
    • 한국산학기술학회논문지
    • /
    • 제13권8호
    • /
    • pp.3660-3665
    • /
    • 2012
  • 블라인드 등화에서 등화 초기에는 눈모형을 빠르게 여는 것이 필요하고, 이후에는 등화기 출력 신호의 오차 레벨을 낮추는 것이 중요하다. 본 논문에서는 특별하게 정해지는 신호점을 사용한 거친 오차 추정과 원 신호점을 사용한 미세 오차 추정을 동시에 산출하고, 두 오차 추정을 활용하는 방식을 제안한다. 두 오차 추정은 각각 눈모형이 닫힌 상태에서 눈모형을 빠르게 열거나, 눈모형이 열리기 시작한 이후 정상상태에서 오차 레벨을 낮추는데 효과적이다. 등화기의 수렴 상태에 따라 두 오차 추정 중 하나를 선택하거나, 두 오차 추정의 상대적 신뢰도에 따라 두 오차를 가중 결합하여 새로운 오차를 산출하는 두 블라인드 등화 알고리즘을 제안하고 그 성능을 비교한다.

Nano 입자를 이용한 Photochromic Lens 개발(1) - Photochromic Lens의 평가방법 및 적용 - (Photochromic Lens development to use Nano particle (1) - Photochromic Lens' estimation method and application -)

  • 김용근;성정섭
    • 한국안광학회지
    • /
    • 제7권2호
    • /
    • pp.169-174
    • /
    • 2002
  • Photochromic lens의 광감성 평가 방법을 만들고, 이를 적용시키기 위하여 Photochromic lens에 UV light source을 조사하였다. UV light 광원을 조사 전과 후의 darkening과 fading 상태의 transmittance(T%)의 파장 의존성을 spectrophotometer, light source, power meter, detecter로 구성된 광학적 장치로 측정한다. 조사 직전의 최대 $T%{\times}{\lambda}$ 면적과 saturated state면적의 상대적 비율을 이용한다. Photochromic lens에서 조사시간 의존성의 평가는 darkening 효율도 ($K_d$)값 ($(1-C_1/A_1)/t_{on}$과 fading 효율도($K_f$)값 ($(C_2/A_2)/t_{on}$을 도입하였다. Darkening과 fading 상태에서 transmittance(T%)의 파장의존성은 $T_m+T_1{\exp}[-(x_0-t)/a]$의 형태를 갖는다. Photochromic lens에서 광감성의 평가 parameter Z, $K_d$, $K_f$를 적용한 결과 각 평가 지수 값을 얻을 수 있다.

  • PDF

측정각 Bias 보상을 통한 수동소나체계의 표적기동분석 성능 향상 연구 (Improvement of Target Motion Analysis for a Passive Sonar System with Measurement Bias Estimation)

  • 유필훈;송택렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2011-2013
    • /
    • 2001
  • In this paper the MMAE(Multiple Model Adaptive Estimation) algorithm using the MGEKF(Modified Gain Extended Kalman Filter) of which modes are set to be measurement biases is proposed to enhance the performance of target tracking with bearing only measurements. The state are composed of relative position, relative velocity and taregt acceleration. The mode probability is calculated from the bearing only measurements from the HMS(Hull-Mounted Sonar). The proposed algorithm is tested in a series of computer simulation runs.

  • PDF

Integrated System for Autonomous Proximity Operations and Docking

  • Lee, Dae-Ro;Pernicka, Henry
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권1호
    • /
    • pp.43-56
    • /
    • 2011
  • An integrated system composed of guidance, navigation and control (GNC) system for autonomous proximity operations and the docking of two spacecraft was developed. The position maneuvers were determined through the integration of the state-dependent Riccati equation formulated from nonlinear relative motion dynamics and relative navigation using rendezvous laser vision (Lidar) and a vision sensor system. In the vision sensor system, a switch between sensors was made along the approach phase in order to provide continuously effective navigation. As an extension of the rendezvous laser vision system, an automated terminal guidance scheme based on the Clohessy-Wiltshire state transition matrix was used to formulate a "V-bar hopping approach" reference trajectory. A proximity operations strategy was then adapted from the approach strategy used with the automated transfer vehicle. The attitude maneuvers, determined from a linear quadratic Gaussian-type control including quaternion based attitude estimation using star trackers or a vision sensor system, provided precise attitude control and robustness under uncertainties in the moments of inertia and external disturbances. These functions were then integrated into an autonomous GNC system that can perform proximity operations and meet all conditions for successful docking. A six-degree of freedom simulation was used to demonstrate the effectiveness of the integrated system.

승차감 향상을 위한 액티브서스펜션의 제어알고리즘 (Control Algorithms of Active Suspension Systems for Ride Comfort Improvement)

  • 탁태오
    • 산업기술연구
    • /
    • 제12권
    • /
    • pp.61-67
    • /
    • 1992
  • Two control algorithms of active suspension system for improving ride quality are described and their effectiveness is assessed using a quarter car model. Optimal control approach demonstrates great flexibility to meet various running conditions of a vehicle. However, in order to fully utilize the power of optimal control apporach, accurate estimation of the state variables is essential. Simple, yet effective sky-hook algorithm seems to be well suited for real application because of its much relaxed requirements on sensing the stste variables and relative easiness to implment.

  • PDF

3차원 직선을 이용한 카메라 모션 추정 (Motion Estimation Using 3-D Straight Lines)

  • 이진한;장국현;서일홍
    • 로봇학회논문지
    • /
    • 제11권4호
    • /
    • pp.300-309
    • /
    • 2016
  • This paper proposes a method for motion estimation of consecutive cameras using 3-D straight lines. The motion estimation algorithm uses two non-parallel 3-D line correspondences to quickly establish an initial guess for the relative pose of adjacent frames, which requires less correspondences than that of current approaches requiring three correspondences when using 3-D points or 3-D planes. The estimated motion is further refined by a nonlinear optimization technique with inlier correspondences for higher accuracy. Since there is no dominant line representation in 3-D space, we simulate two line representations, which can be thought as mainly adopted methods in the field, and verify one as the best choice from the simulation results. We also propose a simple but effective 3-D line fitting algorithm considering the fact that the variance arises in the projective directions thus can be reduced to 2-D fitting problem. We provide experimental results of the proposed motion estimation system comparing with state-of-the-art algorithms using an open benchmark dataset.