• 제목/요약/키워드: relative growth

검색결과 2,241건 처리시간 0.037초

MPCVD에 의해 합성된 다이아몬드 박막 특성에 대한 증착조건의 영향 (Effect of deposition on the properties of diamond thin films synthesized by Microwave Plasma Enhanced Chemical Vapor Deposition)

  • 이병수;이덕출
    • 전기학회논문지P
    • /
    • 제51권1호
    • /
    • pp.33-38
    • /
    • 2002
  • In this study, the metastable state diamond thin films have been deposited on Si substrates from methane-hydrogen and oxygen mixture using microwave plasma enhanced chemical vapor deposition (MPCVD) method. Effects in experimental parameters of MPCVD including methane concentrations, oxygen additions, operating pressure, deposition time on the growth rate and crystallinity were investigated. Diamond thin film was synthesized under the following conditions: methane concentration of 0.5%(0.5sccm)~5%(5sccm), oxygen concentration of 0~80%(2.4sccm), operating pressure of 30Torr~70Torr, deposition time of 1~32hr. SEM, XRD, and Raman spectroscopy were employed to analyze the growth rate and morphology, crystallinity and prefered growth direction, and relative amounts of diamond and non-diamond phases, respectively.

아연환경구배에 의한 녹조류개체군생장의 생태학적 특성 (Ecological Characteristics of Some Algal Populations along Environmental Gradients of Zinc)

  • 송승달
    • Journal of Plant Biology
    • /
    • 제20권3호
    • /
    • pp.119-126
    • /
    • 1977
  • The maximum relative growth rate of algae treated with Zinc was shown as follows: 15, 8, 6, 3 and -5% per day for the rather sensitive Chlorella sp. populations, or 14, 7, 5 and 4% per day for the Pleurococcus sp. populations, and 22, 20, 13, 9 and 7% per day for the more resistant Scenedesmus spinosus populations, respectively for the culture medium with 0, 1, 5, 10 and 20 ppm of Zinc treatment. With mixed cultures of Chlorella sp. and Scenedesmus spinosus populations, the growth of the Chlorella sp. population overcame that of the S. spinomsus population from the cultures treated with relatively low concentration of Zinc. On the contrary, the population growth of the latter resistant species overcame that of the former sensitive species when the concentration of Zinc was above 5 ppm Zn of the medium. This paper describes the results of further investigations of the effects evaluated by direct cell counts method, optical density comparisons, oxygen production and consumption determinations and the measurements of the fate of Zinc treated in the solutions.

  • PDF

접목활착 기간 중 온도.상대습도 및 광조건이 고추 접목묘의 활착 및 생육에 미치는 영향 (The Graft-take and Growth of Grafted Peppers (Capsicum annuum L.) Affected by Temperature, Relative Humidity, and Light Conditions During Healing and Acclimatization)

  • 장윤아;문지혜;이지원;김승유;전창후
    • 생물환경조절학회지
    • /
    • 제18권4호
    • /
    • pp.385-392
    • /
    • 2009
  • 접목 후 활착환경의 관리는 접목의 성공여부를 결정하는 중요한 요인이다. 일반적으로 활착초기 접목부위의 캘러스 분화를 촉진하고 식물체의 지나친 위조를 막기 위해 $25{\sim}30^{\circ}C$ 정도 온도와 90% 이상의 높음상대습도 조건하에서 관리하다가 활착이 진행됨에 따라 점차 온도 및 상대습도를 낮추고, 광 조사량을 늘려주는 환경관리방법이 제시되고 있다(Kim 등, 2001). 본 연구에서는 고추 접목묘의 활착 및 생육향상을 위한 활착단계별 환경조건을 제시하고자, 활착기간 중 온도, 상대습도 및 광 조건이 접목활착률 및 생육에 미치는 영향을 조사하였다. 암조건 하에서 총 6일간의 접목활착기간을 3단계로 나누어, 활착 1단계는 온도 $30^{\circ}C$, 상대습도 95% 조건하에서, 활착 2, 3단계에서는 온도($20^{\circ}C$, $25^{\circ}C$, 및 $30^{\circ}C$) 및 상대습도(75%, 85%, 및 95%) 조건을 달리 처리하였을 때, 접목활착률 및 생육을 조사하였다. 고추 접목묘의 활착을 위해서는 활착 초기 $30^{\circ}C$, 95% 상대습도 조건에서 2일정도 관리한 후, 이후 4일간은 온도와 상대습도 조건을 각각 $20{\sim}25^{\circ}C$, 75~85% 정도로 낮추어 주는 것이 바람직할 것으로 판단된다. 또한 접목활착기간 동안 온도 $30^{\circ}C$, 상대습도 85% 및 암 조건을 대조구로 하여, 활착기간 중 온도($25^{\circ}C$$30^{\circ}C$), 상대습도(65%, 75%, 및 85%) 및 광 조건(광 조사 유무, 광 조건 $45{\pm}2{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$)을 달리하여 처리하였 때, 접목 활착률은 처리간 차이가 없었으며 활착기간 중 저온 저습의 광조사 기간이 길수록 생육이 증가하는 경향을 보여, $25^{\circ}C$ 온도조건하에서 저광 조사 및 65% 까지의 저습 조건이 고추 접목묘의 활착 및 생육촉진에 효과적인 것으로 판단된다.

2050년 저탄소 사회로의 전환을 위한 경제성장, 산업구조, 효율개선, 전력 탈탄소화와 연료 대체의 효과 (Effect of economic growth, industrial structure, efficiency improvement, decarbonization of power sector and fuel substitution for the transition to low carbon society by 2050)

  • 박년배;홍성준;박상용
    • 에너지공학
    • /
    • 제23권4호
    • /
    • pp.61-72
    • /
    • 2014
  • 전 세계 $2^{\circ}C$ 기후변화 목표에 부합하기 위한, 한국의 저탄소 사회로의 전환 경로를 분석하였다. 경제 성장률의 감소, 산업구조 변화, 에너지수요관리 강화, 발전부문 탈탄소화, 저탄소 연료로의 대체를 통해 2050년까지 연료연소 부문 온실가스 배출량을 2011년 대비 67%, 기준 전망 대비 74% 감축할 수 있는 것으로 분석되었다. 2011~2050년 기간 기준 전망과 저탄소 사회 시나리오 간 연료연소 부문 온실가스 누적 감축량에서 경제 성장률의 감소, 산업구조 변화, 에너지수요관리 강화, 발전부문 탈탄소화, 저탄소 연료로의 대체 등이 차지하는 비중은 각각 13%, 9%, 72%, 5%, 1%이었다. 2050년까지 최종에너지 소비는 2011년 대비 50%, 기준 전망 대비 59% 감축이 필요하다. 발전량 중에서 원자력, 석탄, 신재생이 차지하는 비중은 2011년 각각 31%, 40%, 2%에서 2050년에 38%, 2%, 32%, CCS 23%로 바뀐다. 발전 부문에서 CCS와 재생에너지의 비중이 증가하면서, 2050년 전력 배출원단위는 2011년 대비 81%, 기준 전망 대비 76% 감소하였다. 2050년에 1차 에너지는 2011년 대비 36% 감소, 기준 전망 대비 56% 감소하였다. 1990~2011년 동안 한국의 최종에너지 소비와 1차에너지, 연료연소 부문 온실가스 배출량은 각각 176%, 197%, 146% 증가하였다. 2050년 저탄소 사회로 전환하기 위해서는 과거의 패턴에서 급격한 변화가 요구되며, 이를 달성하기 위한 경제와 산업구조의 변화, 에너지 수요 관리 및 저탄소 에너지 공급 기술 등 혁신적인 에너지 기술 개발과 보급, 전기와 재생에너지 중심의 에너지 소비 구조로의 전환 등이 요구된다.

한발이 담배 잎의 생장과 수분 포텐셜에 미치는 영향 (Influence of Drought on Leaf Growth and Water Potential in Tobacco)

  • 이상각;강병화;신주식;변주섭
    • 한국작물학회지
    • /
    • 제42권5호
    • /
    • pp.632-639
    • /
    • 1997
  • 본 실험은 담배의 최대생장 후반기에 수분제한처리를 하여, 한발이 엽위에 따라 생장과 발달에 미치는 영향을 분석하고, 엽영에 따른 엽내 수분상태가 기공컨덕턴스, 잎수분포텐셜과 토양수분관계에 영향을 미치는 생리적 반응을 구명하고져 실시하였다. 담배의 최대생장기 한발영향은 지상부의 제형질을 감소시켰고, 엽위에 따른 생장반응은 중ㆍ하위엽에서 작았고 상위엽에서 컸다. 처리 5일째에 잎의 상대수분함량은 토양수분함량이 4.3%로 감소될 때 상위엽 74%, 중위엽 64%, 하위엽 59%로 담배잎의 위주점은 상대수분함량이 약 75%이었다. 한발에 따른 잎수분포텐셜은 대조구의 -0.58 MPa에서 처리구의 처리5일째에 -1.20 MPa로 떨어졌고, 대조구와 비교하여 약 20%의 수분포텐셜차이가 위주점이 되었다. 기공컨덕턴스는 중ㆍ상위엽에서 12 mol /$\textrm{m}^2 sec^{-1}$에서 0.8 mol /$\textrm{m}^2 sec^{-1}$로 떨어져, 한발처리에 따른 담배의 최대생장후반기의 엽위에 따른 생장반응은 중ㆍ상위엽까지 영향을 미쳤다.

  • PDF

Comparison of Environment, Growth, and Management Performance of the Standard Cut Chrysanthemum 'Jinba' in Conventional and Smart Farms

  • Roh, Yong Seung;Yoo, Yong Kweon
    • 인간식물환경학회지
    • /
    • 제23권6호
    • /
    • pp.655-665
    • /
    • 2020
  • Background and objective: This study was conducted to compare the cultivation environment, growth of cut flowers, and management performance of conventional farms and smart farms growing the standard cut chrysanthemum, 'Jinba'. Methods: Conventional and smart farms were selected, and facility information, cultivation environment, cut flower growth, and management performance were investigated. Results: The conventional and smart farms were located in Muan, Jeollanam-do, and conventional farming involved cultivating with soil culture in a plastic greenhouse, while the smart farm was cultivating with hydroponics in a plastic greenhouse. The conventional farm did not have sensors for environmental measurement such as light intensity and temperature and pH and EC sensors for fertigation, and all systems, including roof window, side window, thermal screen, and shading curtain, were operated manually. On the other hand, the smart farm was equipped with sensors for measuring the environment and nutrient solution, and was automatically controlled. The day and night mean temperatures, relative humidity, and solar radiation in the facilities of the conventional and the smart farm were managed similarly. But in the floral differentiation stage, the floral differentiation was delayed, as the night temperature of conventional farm was managed as low as 17.7℃ which was lower than smart farm. Accordingly, the harvest of cut flowers by the conventional farm was delayed to 35 days later than that of the smart farm. Also, soil moisture and EC of the conventional farm were unnecessarily kept higher than those of the smart farm in the early growth stage, and then were maintained relatively low during the period after floral differentiation, when a lot of water and nutrients were required. Therefore, growth of cut flower, cut flower length, number of leaves, flower diameter, and weight were poorer in the conventional farm than in the smart farm. In terms of management performance, yield and sales price were 10% and 38% higher for the smart farm than for the conventional farm, respectively. Also, the net income was 2,298 thousand won more for the smart farm than for the conventional farm. Conclusion: It was suggested that the improved growth of cut flowers and high management performance of the smart farm were due to precise environment management for growth by the automatic control and sensor.

Optimizing Medium Components for the Maximum Growth of Lactobacillus plantarum JNU 2116 Using Response Surface Methodology

  • Yoo, Heeseop;Rheem, Insoo;Rheem, Sungsue;Oh, Sejong
    • 한국축산식품학회지
    • /
    • 제38권2호
    • /
    • pp.240-250
    • /
    • 2018
  • This study was undertaken to find the optimum soy-peptone, glucose, yeast extract, and magnesium sulfate amounts for the maximum growth of Lactobacillus plantarum JNU 2116 and to assess the effects of these medium factors through the use of response surface methodology. A central composite design was used as the experimental design for the allocation of treatment combinations. In the analysis of the experiment, due to a significant lack of fit of the second-order polynomial regression model that was used at first, cubic terms were added to the model, and then two-way interaction terms were deleted from the model since they were found to be all statistically insignificant. A relative comparison among the four factors showed that the growth of L. plantarum JNU 2116 was affected strongly by yeast extract, moderately by glucose and peptone, and slightly by magnesium sulfate. The estimated optimum amounts of the medium factors for the growth of L. plantarum JNU 2116 are as follows: soy-peptone 0.213%, glucose 1.232%, yeast extract 1.97%, and magnesium sulfate 0.08%. These results may contribute to the production of L. plantarum L67 as a starter culture that may have potential application in yogurt and fermented meat products.

Induced Resistance in Tomato Plants Against Fusarium Wilt Invoked by Nonpathogenic Fusarium, Chitosan and Bion

  • Amini, J.
    • The Plant Pathology Journal
    • /
    • 제25권3호
    • /
    • pp.256-262
    • /
    • 2009
  • The potential of. nonpathogenic Fusarium oxysporum strain Avr5, either alone or in combination with chitosan and Bion, for inducing defense reaction in tomato plants inoculated with F. oxysporum f. sp lycopersici, was studied in vitro and glasshouse conditions. Application Bion at concentration of 5, 50, 100 and $500{\mu}g$/ml, and the highest concentration of chitosan reduced in vitro growth of the pathogen. Nonpathogenic F. oxysporum Avr5 reduced the disease severity of Fusarium wilt of tomato in split plants, significantly. Bion and chitosan applied on tomato seedlings at concentration $100{\mu}g$ a.i./plant; 15, 10 and 5 days before inoculation of pathogen. All treatments significantly reduced disease severity of Fusarium wilt of tomato relative to the infected control. The biggest disease reduction and increasing tomato growth belong to combination of nonpathogenic Fusarium and Bion. Growth rate of shoot and root markedly inhibited in tomato plants in response to tomato Fusarium wilt as compared with healthy control. These results suggest that reduction in disease incidence and promotion in growth parameters in tomato plants inoculated with nonpathogenic Fusarium and sprayed with elicitors could be related to the synergistic and cooperative effect between them, which lead to the induction and regulation of disease resistance. Combination of elicitors and non-pathogenic Fusarium synergistically inhibit the growth of pathogen and provide the first experimental support to the hypothesis that such synergy can contribute to enhanced fungal resistance in tomato. This chemical could provide a new approach for suppression of tomato Fusarium wilt, but its practical use needs further investigation.

전도성 기판에 도입된 산화아연 나노월의 능동적 성장법과 전자소자

  • 김동찬;이주호;배영숙;최원철;조형균;이정용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.54-54
    • /
    • 2010
  • This article reports a spontaneous method for controlling the growth mode from vertically arrayed ultra-slim MgZnO nanowires to nanowalls through the Zn random motion of seeds formed by surface phase separation by Mg injection near an evaporation temperature of Zn. The random motion of single crystal MgZnO seeds with relative Zn rich phase played a vital role in the growth of the MgZnO nanowalls. The seeds were networked with increasing Zn flux compared with Mg flux and closing to the evaporation temperature of Zn on phase separation layers. We achieved fabrication of MgZnO nanowalls on various non- and conducting substrates by this advanced growth method. The MgZnO nanowalls hydrogen sensor showed an improved sensing performance compared to the MgZnO nanowires grown under the similar conditions. Based on the microstructural characterizations, the growth procedure and models for the evolution of the structure transition from MgZnO nanowires to nanowalls on the Si substrates are proposed for phased growth times.

  • PDF

산성비가 봉선화(Impatiens balsamina L.) 및 만수국(Tagetes patula L.)의 발아, 생장, 완충능력 및 양료용탈에 미치는 영향 (Effect of Simulated Acid Rain on Germination, Growth, Acid Buffering Capacity and Nutrient Leaching in Impatiens balsamina L. and Tagetes patula L.)

  • 김학윤;이인중;신동현;김길웅;조문수
    • 생명과학회지
    • /
    • 제10권6호
    • /
    • pp.598-604
    • /
    • 2000
  • This study was conducted to investigate the effect of simulated acid rain (SAR) on germination, growth, acid buffering capacity and nutrient leaching in Impatiens balsamina L. and Tagetes patula L.. In both species, germination was not inhibited at pH 4.0, but the germination rate decreased at the lower pH of 3.0, showing higher rate in Inpatiens balsamina L. than Tagetes patula L.. As the pH decreases, the growth of radicle was markedly decreased than that of hypocotyl in both species. The plant height, root length, leaf area, total dry weight, relative growth rate and net assimilation rate were inhibited by SAR. The acid buffering capacity in the leaves were increased at pH 4.0, on the other hand, it was shown a tendency to decrease at pH 2.0 in both species. As the pH levels decreased from 5.6 to 2.0, the nutrient leaching from leaves was significantly increased in both species. Based on the results, there are a great difference in the responses to SAR between the two species. In general, Tagetes patula L. represented a higher tolerance to SAR than Impatiens balsamina L.. These results suggested that interspecific variation in the acid buffering capacity and nutrient leaching from leaves may be responsible for the interspecific susceptibility to SAR.

  • PDF