• Title/Summary/Keyword: relative change

Search Result 2,234, Processing Time 0.027 seconds

A Exploratory Study on Multiple Trajectories of Life Satisfaction During Retirement Transition: Applied Latent Class Growth Analysis (은퇴 전후 생활만족도의 다중 변화궤적에 관한 탐색적 연구: 잠재집단성장모형을 중심으로)

  • Kang, Eun-Na
    • Korean Journal of Social Welfare Studies
    • /
    • v.44 no.3
    • /
    • pp.85-112
    • /
    • 2013
  • This study aims to understand the developmental trajectories of life satisfaction among retirees and to examine what factors differentiate different trajectory classes. This study used three waves of longitudinal data from Korean Retirement and Income Study and data collected every two years(2005, 2007, and 2009). Subjects were respondents aged 50-69 who identified to be retired between wave 1 and wave 2. Finally, this study used 243 respondents for final data analysis. Life satisfaction was measured by seven items. The latent class growth model and multiple logistic regression model were used for data analysis. This study identified three distinct trajectory classes: high stable class(47.7%), high at the early stage but decreased class(42.8%), and low at the early stage and then decreased class(9.5%). This study founded that approximately 50% of the retirees experienced the decline of life satisfaction after retirement and about 10% of the sample was the most vulnerable group. This study analyzed what factors make different among the distinct trajectory groups. As a results, retirees who experienced the improvement in health change were more likely to be in 'high stable class' compared to 'hight at the early stage but decreased class'. In addition, retirees who were less educated, maintained the same health status rather than the improvement, worked as a temporary or a day laborer, and had less household income were more likely to belong to 'low at the early stage and then decreased class' relative to 'high stable class'. This study suggests that there are distinct three trajectories on life satisfaction among the retirees and finds out factors differentiating between trajectory groups. Based on these findings, the study discusses the implications for social work practice and further study.

Simulation and Sensitivity Analysis of the Air Separation Unit for SNG Production Relative to Air Boosting Ratios (SNG 생산용 공기분리공정의 공기 재 압축비에 따른 민감도 분석)

  • Kim, Mi-yeong;Joo, Yong-Jin;Seo, Dong Kyun;Shin, Jugon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.173-179
    • /
    • 2019
  • Cryogenic air separation unit produces various gases such as $N_2$, $O_2$, and Ar by liquefying air. The process also varies with diverse production conditions. The one for SNG production among them has lower efficiency compared to other air separation unit because it requires ultrapure $O_2$ with purity not lower than 99.5%. Among factors that reduce the efficiency of air separation unit, power consumption due to compress air and heat duty of double column were representatives. In this study, simulation of the air separation unit for SNG production was carry out by using ASEPN PLUS. In the results of the simulation, 18.21 kg/s of at least 99.5% pure $O_2$ was produced and 33.26 MW of power was consumed. To improve the energy efficiency of air separation unit for SNG production, the sensitivity analysis for power consumption, purities and flow rate of $N_2$, $O_2$ production in the air separation unit was performed by change of air boosting ratios. The simulated model has three types of air with different pressure levels and two air boosting ratio. The air boosting ratio means flow rate ratio of air by recompressing in the process. As increasing the first air boosting ratio, $N_2$ flow rate which has purity of 99.9 mol% over increase and $O_2$ flow rate and purity decrease. As increasing the second air boosting ratio, $N_2$ flow rate which has purity of 99.9 mol% over decreases and $O_2$ flow rate increases but the purity of $O_2$ decreases. In addition, power consumption of compressing to increase in the two cases but results of heat duty in double column were different. The heat duty in double column decreases as increasing the first air boosting ratio but increases as increasing the second air boosting ratio. According to the results of the sensitivity analysis, the optimum air boosting ratios were 0.48 and 0.50 respectively and after adjusting the air boosting ratios, power consumption decreased by approximately 7% from $0.51kWh/O_2kg$ to $0.47kWh/O_2kg$.

Estimation of Soybean Growth Using Polarimetric Discrimination Ratio by Radar Scatterometer (레이더 산란계 편파 차이율을 이용한 콩 생육 추정)

  • Kim, Yi-Hyun;Hong, Suk-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.878-886
    • /
    • 2011
  • The soybean is one of the oldest cultivated crops in the world. Microwave remote sensing is an important tool because it can penetrate into cloud independent of weather and it can acquire day or night time data. Especially a ground-based polarimetric scatterometer has advantages of monitoring crop conditions continuously with full polarization and different frequencies. In this study, soybean growth parameters and soil moisture were estimated using polarimetric discrimination ratio (PDR) by radar scatterometer. A ground-based polarimetric scatterometer operating at multiple frequencies was used to continuously monitor the soybean growth condition and soil moisture change. It was set up to obtain data automatically every 10 minutes. The temporal trend of the PDR for all bands agreed with the soybean growth data such as fresh weight, Leaf Area Index, Vegetation Water Content, plant height; i.e., increased until about DOY 271 and decreased afterward. Soil moisture lowly related with PDR in all bands during whole growth stage. In contrast, PDR is relative correlated with soil moisture during below LAI 2. We also analyzed the relationship between the PDR of each band and growth data. It was found that L-band PDR is the most correlated with fresh weight (r=0.96), LAI (r=0.91), vegetation water content (r=0.94) and soil moisture (r=0.86). In addition, the relationship between C-, X-band PDR and growth data were moderately correlated ($r{\geq}0.83$) with the exception of the soil moisture. Based on the analysis of the relation between the PDR at L, C, X-band and soybean growth parameters, we predicted the growth parameters and soil moisture using L-band PDR. Overall good agreement has been observed between retrieved growth data and observed growth data. Results from this study show that PDR appear effective to estimate soybean growth parameters and soil moisture.

A problem of authenticity in the chapter 'Confucius became aged, and liked "The Book of Changes"' of yao 要, "essentials," seen throughout 『帛書周易』 the Mawangdui Boshu Zhouyi Manuscript. -in relation to Confucius and 『易』"The Changes"- (『백서주역(帛書周易)』 「요(要)」의 '부자노이호역(夫子老而好易)'장의 진위(眞僞) 문제 -공자와 『역』의 관계를 중심으로-)

  • Kim, Sang-sup
    • Journal of Korean Philosophical Society
    • /
    • v.129
    • /
    • pp.1-22
    • /
    • 2014
  • Columns 12-18 record a conversation between an aged Confucius and his disciple Zi Gong concerning the Changes and especially the role of divination in its use. The last section, from the bottom of column 24, concerns the hexagrams Sun損, "Decrease," and Yi益, "Increase," which Confucius is here made to regard as the culmination of wisdom in the Zhouyi. The conversation between Confucius and Zi Gong, and especially Zi Gong's apparent misunderstanding of Confucius's interest in the text, has already attracted considerable scholarly interest. Zi Gong criticizes Confucius for changing his teaching about the importance of the Zhouyi and for performing divinations. Confucius responds that while he does indeed perform divinations. there is a major difference between his use of the text and that of others: he regards the I Ching as a repository of an ancient wisdom. This would seem to signal recognition of a dramatic change in the function and status of the text. Zi Gong said: "Does the Master also believe in milfoil divination?" The Master said: "I am right in only seventy out of one hundred prognostications. Even with the prognostications of Liangshan of Zhou one necessarily follows it most of the time and no more." The Master said: "As for the Changes, I do indeed put its prayers and divinations last, only observing its virtue and property. Intuiting the commendations to reach the number, and understanding the number to reach virtue, is to have humaneness and to put it into motion properly. If the commendation do not lead to the number, then merely acts as a magician; if the number does not lead to virtue, then one merely acts as a scribe. The divinations of scribes and magicians tend toward it but are not yet there; delight in it but are not correct. Perhaps it will be because of the Changes that sires of later generations will doubt me. I seek its virtue and nothing more. I am on the same road as the scribes and magicians but end up differently. The conduct of the gentleman's virtue is to seek blessings; that is why he sacrifices, but little; the righteousness of his humaneness is to seek auspiciousness; that is why he divines, but rarely. Do not the divinations of priest and magicians come last!" Although Confucius says two ways of the symbolic numbers and virtue-property, he emphasizes his way of virtue and property more important. In fact he who wrote in Yao 要, "essentials," Confucius's saying describes his own viewpoints of the Changes throughout the conversations between Confucius and his disciple Zi Gong, and is only to borrow the name of Confucius. Furthermore, quoting the original text in Yao 要, "essentials," in sequence, also comparing the materials of "the Analects of Confucius論語," with "the Shih chi史記," this thesis will be centered to a great extent on the relative similarity and differences between the Mawangdui Boshu Zhouyi Manuscript and the received text, and discussed the authencity of Yao 要, "essentials," of the contents shown in the chapter of 'Confucius became aged, and liked "The Book of Changes."' the relation of Confucius and the Changes will be clarified naturally through this progress.

Particulate Matter and CO2 Improvement Effects by Vegetation-based Bio-filters and the Indoor Comfort Index Analysis (식생기반 바이오필터의 미세먼지, 이산화탄소 개선효과와 실내쾌적지수 분석)

  • Kim, Tae-Han;Choi, Boo-Hun;Choi, Na-Hyun;Jang, Eun-Suk
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.268-276
    • /
    • 2018
  • BACKGROUND: In the month of January 2018, fine dust alerts and warnings were issued 36 times for $PM_{10}$ and 81 times for PM2.5. Air quality is becoming a serious issue nation-wide. Although interest in air-purifying plants is growing due to the controversy over the risk of chemical substances of regular air-purifying solutions, industrial spread of the plants has been limited due to their efficiency in air-conditioning perspective. METHODS AND RESULTS: This study aims to propose a vegetation-based bio-filter system that can assure total indoor air volume for the efficient application of air-purifying plants. In order to evaluate the quantitative performance of the system, time-series analysis was conducted on air-conditioning performance, indoor air quality, and comfort index improvement effects in a lecture room-style laboratory with 16 persons present in the room. The system provided 4.24 ACH ventilation rate and reduced indoor temperature by $1.6^{\circ}C$ and black bulb temperature by $1.0^{\circ}C$. Relative humidity increased by 24.4% and deteriorated comfort index. However, this seemed to be offset by turbulent flow created from the operation of air blowers. While $PM_{10}$ was reduced by 39.5% to $22.11{\mu}g/m^3$, $CO_2$ increased up to 1,329ppm. It is interpreted that released $CO_2$ could not be processed because light compensation point was not reached. As for the indoor comfort index, PMV was reduced by 83.6 % and PPD was reduced by 47.0% on average, indicating that indoor space in a comfort range could be created by operating vegetation-based bio-filters. CONCLUSION: The study confirmed that the vegetation-based bio-filter system is effective in lowering indoor temperature and $PM_{10}$ and has positive effects on creating comfortable indoor space in terms of PMV and PPD.

Effect of micro-environment in ridge and southern slope on soil respiration in Quercus mongolica forest

  • Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.210-218
    • /
    • 2018
  • Background: Soil respiration (Rs) is a major factor of the absorption and accumulation of carbon through photosynthesis in the ecosystem carbon cycle. This directly affects the amount of net ecosystem productivity, which affects the stability and sustainability of the ecosystem. Understanding the characteristics of Rs is indispensable to scientifically understand the carbon cycle of ecosystems. It is very important to study Rs characteristics through analysis of environmental factors closely related to Rs. Rs is affected by various environmental factors, such as temperature, precipitation, soil moisture, litter supply, organic matter content, dominant plant species, and soil disturbance. This study was conducted to analyze the effects of micro-topographical differences on Rs in forest vegetation by measuring the Rs on the ridge and southern slope sites of the broadly established Quercus mongolica forest in the central Korean area. Method: Rs, Ts, and soil moisture data were collected at the southern slope and ridge of the Q. mongolica forest in the Mt. Jeombong area in order to investigate the effects of topographical differences on Rs. Rs was collected by the closed chamber method, and data collection was performed from May 2011 to October 2013, except Winter seasons from November to April or May. For collecting the raw data of Rs in the field, acrylic collars were placed at the ridge and southern slope of the forest. The accumulated surface litter and the soil organic matter content (SOMC) were measured to a 5 cm depth. Based on these data, the Rs characteristics of the slope and ridge were analyzed. Results: Rs showed a distinct seasonal variation pattern in both the ridge and southern slope sites. In addition, Rs showed a distinct seasonal variation with high and low Ts changes. The average Rs measurements for the two sites, except for the Winter periods that were not measured, were $550.1\;mg\;CO_2m^{-2}h^{-1}$ at the ridge site and $289.4\;mg\;CO_2m^{-2}h^{-1}$ at the southern slope, a difference of 52.6%. There was no significant difference in the Rs difference between slopes except for the first half of 2013, and both sites showed a tendency to increase exponentially as Ts increased. In addition, although the correlation is low, the difference in Rs between sites tended to increase as Ts increased. SMC showed a large fluctuation at the southern slope site relative to the ridge site, as while it was very low in 2013, it was high in 2011 and 2012. The accumulated litter of the soil surface and the SOMC at the depth range of 0~5 cm were $874g\;m^{-2}$ and 23.3% at the ridge site, and $396g\;m^{-2}$ and 19.9% at the southern slope site. Conclusions: In this study, Rs was measured for the ridge and southern slope sites, which have two different results where the surface litter layer is disturbed by strong winds. The southern slope site shows that the litter layer formed in autumn due to strong winds almost disappeared, and while in the ridge site, it became thick due to the transfer of litter from the southern slope site. The mean Rs was about two times higher in the ridge site compared to that in the southern slope site. The Rs difference seems to be due to the difference in the amount of litter accumulated on the soil surface. As a result, the litter layer supplied to the soil surface is disturbed due to the micro-topographical difference, as the slope and the change of the community structure due to the plant season cause heterogeneity of the litter layer development, which in turn affects SMC and Rs. Therefore, it is necessary to introduce and understand these micro-topographical features and mechanisms when quantifying and analyzing the Rs of an ecosystem.

An Experimental Study on Radiation/Convection Hybrid Air-Conditioner (복사-대류 겸용 하이브리드 냉방기에 대한 실험 연구)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.288-296
    • /
    • 2019
  • Radiation cooling has used ceilings or floors as cooling surfaces. In such cases, to avoid moisture condensation on the surface, the surface temperature needs be higher than the dew point temperature or an additional dehumidifier is added. In this study, with a goal for residential application, intentional moisture condensation on the cooling surface was attempted, which increased the cooling capacity and improved the indoor comfortness. This method included two separate refrigeration cycles - convection-type dehumidifying cycle and the panel cooling cycle. Test results on the panel cooling cycle showed that, at the standard outdoor ($35^{\circ}C/24^{\circ}C$) and indoor ($27^{\circ}C/19.5^{\circ}C$) condition, the refrigerant flow rate was 8.8 kg/h, condensation temperature was $51^{\circ}C$, evaporation temperature was $8.8^{\circ}C$, cooling capacity was 376 W and COP was 1.75. Furthermore, the panel temperature was uniform within $1^{\circ}C$ (between $13^{\circ}C$ and $14^{\circ}C$). As the relative humidity decreased, the cooling capacity decreased. However, the power consumption remained approximately constant. In the convection-type dehumidification cycle, the refrigerant flow rate was 21.1 kg/h, condensation temperature was $61^{\circ}C$, evaporation temperature was $5.0^{\circ}C$, cooling capacity was 949 W and COP was 2.11 at the standard air condition. When both the radiation panel cooling and the dehumidification cycle operated simultaneously, the cooling capacity of the radiation panel cycle was 333 W and that of the dehumidification cycle was 894 W, and the COP was 1.89. As the fan flow rate decreased, both the cooling capacity of the radiation panel and the dehumidification cycle decreased, with that of the dehumidification cycle decreasing at a higher rate. Finally, a possible control logic depending on the change of the cooling load was proposed based on the results of the present study.

Evaluation of Pedestrian Space Ion Index by Land Use Type in Heat wave - Focused on ChungJu - (폭염시 토지이용유형별 보행공간 이온지수 평가 - 충주시를 대상으로 -)

  • Yoon, Yong Han;Yoon, Ji Hun;Kim, Jeong Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.3
    • /
    • pp.354-365
    • /
    • 2019
  • This study measured and analyzed the weather characteristics and the air-ion characteristics of walking space by land use type in Chungju, Chungcheongbuk Province during the heat wave. We used the land registration map to classify the type of land use in walking areas in the studied into the production and green area, the residential area, and the commercial area. We then selected 44 measurement points in about 4.1 km. They included 12 walking space points in the green area, 14 in the residential area, and 18 in the commercial area. Moreover, we calculated the ion index by analyzing the impact of weather factors such as temperature, relative humidity, solar radiation, and net radiation in the walking space on the anion generation and cation generation by land use type during the heat wave. Comparison of air ion characteristics in walking space by type of land use during the heat wave showed that the average cation generation was in the order of commercial area ($700.73cations/cm^3$) > residential area ($600.76cations/cm^3$) > green area ($589.73cations/cm^3$). The average anion generation was in the order of green area ($663.95anions/cm^3$) > residential area ($628.48anions/cm^3$) > commercial area ($527.48anions/cm^3$). The average ion index was in the order of green area (1.13) > residential area (1.04) > commercial area (0.75). This study checked the weather characteristics, cation generation, and anion generation in walking space according to the land use type during the heat wave and checked the difference of ion indexes in the walking space according to the land use type. However, there were limitations in the lack of accurate comparison according to the land use due to the moving measurement and the insufficient quantitative comparison according to the change of road width. Therefore, we recommend further studies that consider the road characteristics.

A Study on the Possibility of Recycling Coir Organic Substrates for using Strawberry Hydroponics Media (토마토 폐배지를 딸기 수경재배 배지로 재이용 가능성 연구)

  • Lee, Gyu-Bin;Park, Young-Hoon;Choi, Young-Whan;Son, Beung-Gu;Kim, Jooh-Yup;Kang, Nam-Jun;Kang, Jum-Soon
    • Journal of Korea Society of Waste Management
    • /
    • v.34 no.2
    • /
    • pp.205-213
    • /
    • 2017
  • The current study was performed to investigate the effect of recycling coir substrates on the growth, fruit yield, and quality of strawberry plants. Analysis of physical properties revealed that the pH of a fresh coir substrate was 5.04 while those of substrates reused for one and two years were 5.20 and 5.33, respectively. The electrical conductivity (EC) of a new substrate was as high as $4.58dS{\cdot}m^{-1}$. This can cause salt stress after transplanting. The EC tended to decrease as the substrate was recycled, and the EC of a two-year recycled substrate was $1.48dS{\cdot}m^{-1}$. The fresh substrate had lower nitrogen and calcium concentrations, but higher phosphate, potassium, and sodium concentrations than the recycled coir substrate. The coir substrates recycled for one or two years maintained better chemical properties for plant growth than the fresh substrate. Strawberry growth varied depending on the number of years that the coir substrate was recycled. In general, strawberries grown in substrates that had been reused for two years did better than those grown in substrates that had been reused once or were fresh. Ninety days after transplanting, a plant grown in a substrate that had been reused for two years contained 25 leaves, which was 3.6 more than with a fresh substrate. In addition, the plants grown in a substrate that had been reused for two years exhibited larger leaf areas than those grown in other substrates. Coir substrates that had been reused for one year increased the number and area of leaves, but not as much as the substrate that had been reused for two years. One- and two-year reused coir substrates increased the weight of strawberries produced relative to the unused substrate, but the difference was not statistically significant. The plants grown in two-year reused substrates were longer and wider, as well. Also, the number of fruits per plant was higher when substrates were reused. Specifically, the number of fruits per plant was 28.7 with a two-year reused substrate, but only 22.2 with a fresh substrate. The fruit color indices (as represented by their Hunter L, a, b values) were not considerably affected by recycling of the coir substrate. The Hunter L value, which indicates the brightness of the fruit, did not change significantly when the substrate was recycled. Neither Hunter a (red) nor b (yellow) values were changed by recycling. In addition, there were no significant changes in the hardnesses, acidities, or soluble solid-acid ratios of fruits grown in recycled substrates. Thus, it is thought that recycling the coir substrate does not affect measures of fruit quality such as color, hardness, and sugar content. Overall, reuse of coir substrates from hydroponic culture as high-bed strawberry growth substrates would solve the problems of new substrate costs and the disposal of substrates that had been used once.

Changes in fish species composition after fishway improvement in Songrim weir, Yeongok stream (연곡천 송림보에서 어도의 개선에 따른 어류 종 조성 변화)

  • Yun, Young-Jin;Kim, Ji Yoon;Kim, Hye-Jin;Bae, Dae-Yeol;Park, Gu Seong;Nam, Chang Dong;Lim, Kyung Hun;Lee, Moon-Yong;Lee, Seong-Yong;Moon, Kyeong-Do;Lee, Eui-Haeng;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.2
    • /
    • pp.195-206
    • /
    • 2021
  • In 2020, South Korea initiated research and development of a longitudinal connectivity evaluation between upstream and downstream based on stream ecosystem health. This study analyzed the migration of upstream and downstream migratory fish species, fish distribution characteristics, trophic guilds, tolerance guilds, and species composition changes from 2015 to 2020 at Songrim weir in Yeongok stream, where the cross-structure of an ice harbor-type fishway for fish movement was recently improved. A total of 5,136 fish, including 36 species, were collected and three major migratory fishes were identified, namely, Tribolodon hakonensis, Plecoglossus altivelis altivelis, and Oncorhynchus keta. According to the comparative analysis before (Pre-I) and after (Post-I) improvement of the fishway, the relative abundance of primary freshwater fish increased in the upstream section, while the number of migratory fishes decreased. The fish species that used the fishway in the Songrim weir were Tribolodon hakonensis (58.4%) and Plecoglossus altivelis altivelis(11.8%). According to the Wilcoxon Signed-Rank Test migratory fish showed a statistically significant difference (p<0.05) in the upstream and downstream, showing a biological improvement effect of the crossstructure. On the other hand, the annual change of migratory fish based on the MannKendall trend test did not significantly increase or decrease (p>0.05). Therefore, in the fish passage improvement project, it is necessary not only for physical, hydrological, and structural tests, but also for pre- and post-biological tests on the use and improvement effect of fishway.