• Title/Summary/Keyword: related genes

Search Result 3,194, Processing Time 0.029 seconds

Correlation of Protumor Effects of Leucine-Rich Repeat Kinase 2 with Interleukin-10 Expression in Lung Squamous Cell Carcinoma (폐 편평세포암종 내 Leucine-Rich Repeat Kinase 2 암촉진 효과와 Interleukin-10 발현과의 연관성)

  • Sung Won LEE;Sangwook PARK
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.2
    • /
    • pp.105-112
    • /
    • 2023
  • Leucine-rich repeat kinase 2 (LRRK2) is known to play a crucial role in the pathophysiology of neurodegenerative disorders such as Parkinson's disease. LRRK2 is predominantly expressed in the lung as well as the brain. However, it is unclear whether LRRK2 expression correlates with the pathogenesis of lung squamous cell carcinoma (LUSC). This study analyzes the prognostic significance of LRRK2 in LUSC using the Kaplan-Meier plotter tool. High expression of LRRK2 is known to be associated with a bad prognosis in patients with LUSC. Patients with high LRRK2 expression, tumor mutational burden, high neoantigen load, and even gender correlation reportedly have the worse survival rates. In the gene expression profiling interactive analysis (GEPIA) database, the severity of pathogenesis in LUSC with high LRRK2 expression positively corresponds to a high expression of anti-inflammatory cytokines but not inflammatory cytokines. Similarly, the increased expression of interleukin (IL)10-related genes was shown to be significantly linked in LRRK2-high LUSC patients having a poor prognosis. Moreover, the tumor immune estimation resource (TIMER) database suggests that macrophages are one of the cellular sources of IL10 in LRRK2-high LUSC patients. Collectively, our results demonstrate that the postulated LRRK2-IL10 axis is a potential therapeutic target and prognostic biomarker for LUSC.

Apoptosis of Kinetin Riboside in Colorectal Cancer Cells Occurs by Promoting β-Catenin Degradation

  • TaeKyung Nam;Wonku Kang;Sangtaek Oh
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1206-1212
    • /
    • 2023
  • The Wnt/β-catenin pathway plays essential roles in regulating various cellular behaviors, including proliferation, survival, and differentiation [1-3]. The intracellular β-catenin level, which is regulated by a proteasomal degradation pathway, is critical to Wnt/β-catenin pathway control [4]. Normally, casein kinase 1 (CK1) and glycogen synthase kinase-3β (GSK-3β), which form a complex with the scaffolding protein Axin and the tumor suppressor protein adenomatous polyposis coli (APC), phosphorylate β-catenin at Ser45, Thr41, Ser37, and Ser33 [5, 6]. Phosphorylated β-catenin is ubiquitinated by the β-transducin repeat-containing protein (β-TrCP), an F-box E3 ubiquitin ligase complex, and ubiquitinated β-catenin is degraded via a proteasome pathway [7, 8]. Colorectal cancer is a significant cause of cancer-related deaths worldwide. Abnormal up-regulation of the Wnt/β-catenin pathway is a major pathological event in intestinal epithelial cells during human colorectal cancer oncogenesis [9]. Genetic mutations in the APC gene are observed in familial adenomatous polyposis coli (FAP) and sporadic colorectal cancers [10]. In addition, mutations in the N-terminal phosphorylation motif of the β-catenin gene were found in patients with colorectal cancer [11]. These mutations cause β-catenin to accumulate in the nucleus, where it forms complexes with transcription factors of the T-cell factor/lymphocyte enhancer factor (TCF/LEF) family to stimulate the expression of β-catenin responsive genes, such as c-Myc and cyclin D1, which leads to colorectal tumorigenesis [12-14]. Therefore, downregulating β-catenin response transcription (CRT) is a potential strategy for preventing and treating colorectal cancer. Plant cytokinins are N6-substituted purine derivatives; they promote cell division in plants and regulate developmental pathways. Natural cytokinins are classified as isoprenoid (isopentenyladenine, zeatin, and dihydrozeatin), aromatic (benzyladenine, topolin, and methoxytopolin), or furfural (kinetin and kinetin riboside), depending on their structure [15, 16]. Kinetin riboside was identified in coconut water and is a naturally produced cytokinin that induces apoptosis and exhibits antiproliferative activity in several human cancer cell lines [17]. However, little attention has been paid to kinetin riboside's mode of action. In this study, we show that kinetin riboside exerts its cytotoxic activity against colon cancer cells by suppressing the Wnt/β-catenin pathway and promoting intracellular β-catenin degradation.

Anti-skinaging effects of Gryllus bimaculatus on ERM-CZ100-exposed human diploid fibroblasts (미세먼지 유발 피부노화에 대한 쌍별귀뚜라미의 예방 효과)

  • Kyong Kim;Chae-Heon Lee;Eun-Young Park;Yoon Sin Oh
    • Journal of Nutrition and Health
    • /
    • v.56 no.6
    • /
    • pp.615-628
    • /
    • 2023
  • Purpose: Increasing levels of domestic fine dust (DFD) have emerged as a serious problem that threatens public health by causing chronic respiratory diseases and skin aging. The present study was performed to investigate the inhibitory effects of Gryllus bimaculatus (the two-spotted cricket), which has recently attracted attention as an edible insect in South Korea, on DFD-induced aging and inflammation. Methods: To verify that DFD causes skin aging and investigate the anti-aging effect of an aqueous ethanolic-Gryllus bimaculatus extract (AE-GBE), human diploid fibroblasts (HDF) were treated with 100 ㎍/mL of European reference material (ERM)-CZ100 dust for 24 hrs in the presence or absence of 100 ㎍/ml AE-GBE. Aging and cellular toxicities were assessed by measuring reactive oxygen species (ROS) levels, DNA fragmentation, and β-galactosidase activity. The protein levels of cyclooxygenase (COX) 2, matrix metalloproteinase (MMP)-1, and collagen were measured by western blot, and the mRNA expressions of inflammation-related genes were assayed by quantitative reverse transcriptase polymerase chain reaction. Results: Treatment with ERM-CZ100 induced an aged phenotype in HDF cells, as evidenced by increased ROS levels, DNA fragmentation, and senescence-associated β-galactosidase activity, but cotreatment with AE-GBE significantly reduced these inductions. The mRNA expressions of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α, induced by ERM-CZ100 were also reduced by AE-GBE cotreatment, which also reduced COX2 expression. Moreover, ERM-CZ100-induced MMP-1 expression and reduced collagen type I expression were recovered by AE-GBE treatment. Conclusion: These results suggest that AE-GBE is a potential treatment for domestic fine dust-induced skin inflammation and inflammaging.

Association of CAPN10 gene (rs3842570) polymorphism with the type 2 diabetes mellitus among the population of Noakhali region in Bangladesh: a case-control study

  • Munia Sultana;Md. Mafizul Islam;Md. Murad Hossain;Md. Anisur Rahman;Shuvo Chandra Das;Dhirendra Nath Barman;Farhana Siddiqi Mitu;Shipan Das Gupta
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.33.1-33.11
    • /
    • 2023
  • Type 2 diabetes mellitus (T2DM) is a multifactorial, polygenic, and metabolically complicated disease. A large number of genes are responsible for the biogenesis of T2DM and calpain10 (CAPN10) is one of them. The association of numerous CAPN10 genetic polymorphisms in the development of T2DM has been widely studied in different populations and noticed inconclusive results. The present study is an attempt to evaluate the plausible association of CAPN10 polymorphism SNP-19 (rs3842570) with T2DM and T2DM-related anthropometric and metabolic traits in the Noakhali region of Bangladesh. This case-control study included 202 T2DM patients and 75 healthy individuals from different places in Noakhali. A significant association (p < 0.05) of SNP-19 with T2DM in co-dominant 2R/3R vs. 3R/3R (odds ratio [OR], 2.7; p=0.0014) and dominant (2R/3R) + (2R/2R) vs. 3R/3R (OR, 2.47; p=0.0011) genetic models was observed. High-risk allele 2R also showed a significant association with T2DM in the allelic model (OR, 1.67; p=0.0109). The genotypic frequency of SNP-19 variants showed consistency with Hardy-Weinberg equilibrium (p > 0.05). Additionally, SNP-19 genetic variants showed potential associations with the anthropometric and metabolic traits of T2DM patients in terms of body mass index, systolic blood pressure, diastolic blood pressure, total cholesterol, and triglycerides. Our approach identifies the 2R/3R genotype of SNP-19 as a significant risk factor for biogenesis of T2DM in the Noakhali population. Furthermore, a large-scale study could be instrumental to correlate this finding in overall Bangladeshi population.

Intramuscular fat formation in fetuses and the effect of increased protein intake during pregnancy in Hanwoo cattle

  • Jun Sang Ahn;Gi Hwal Son;Eung Gi Kwon;Ki Yong Chung;Sun Sik Jang;Ui Hyung Kim;Jae Yong Song;Hyun Jeong Lee;Byung Ki Park
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.818-837
    • /
    • 2023
  • Understanding adipocyte development in fetus during bovine pregnancy is important for strengthening fattening technology. Additionally, nutritional level of dams during pregnancy has the potential to improve offspring growth and fat development. The purpose of this study is to evaluate the intramuscular adipocyte development and expression level of related genes in bovine fetus, and the effect of increased crude protein (CP) intake during pregnancy on the growth performance and carcass characteristics of male offspring. Eighty six pregnant Hanwoo cows (average body weight, 551.5 ± 51.3 kg, age 5.29 ± 0.61 y) were used. Fetuses were collected at 90, 180 and 270 d of gestation from 18 pregnant Hanwoo cows. The remaining 68 pregnant cows were randomly assigned to 2 feeding groups. The control (CON) group was provided the standard protein diet (n = 34), and treatment (TRT) group was provided a diet with a 5% increase in CP intake (n = 34). Male offspring were divided into two groups according to protein treatment of the pregnant cows: CON male offspring (CON-O) and TRT male offspring (TRT-O). Intramuscular adipocytes were found in the fetal skeletal muscle after 180 days of gestation. Male calf's birth weight increased in the TRT group compared to that in the CON group (p < 0.002). The final body weight (p < 0.003) and average daily gain (p < 0.019) of male offspring were significantly higher in TRT-O than in CON-O. The feed conversion ratio was also improved by 10.5% in TRT-O compared to that in CON-O (p < 0.026). Carcass weight was significantly higher in the TRT-O group than that in the CON-O group (p < 0.003), and back fat was thicker in the TRT-O group (p = 0.07). The gross receipts and net income were higher in TRT-O than in CON-O (p < 0.04). Thus, fetal intramuscular fat can be formed from the mid-gestation period, and increased CP intake during pregnancy can increase net income by improving the growth and carcass weight of male offspring rather than intramuscular fat.

Analysis of the Causes of a Large Food Poisoning Outbreak Attributable to Bacillus cereus (Bacillus cereus에 의한 대규모 집단식중독 원인 분석)

  • Hyunah Lee;Youngeun Ko;Dayeon Lee;KyungA Yun;Hyeonjeung Kim;Ok Kim;Junhyuk Park
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.2
    • /
    • pp.102-108
    • /
    • 2024
  • This study was performed to establish the epidemiological features of a food poisoning outbreak that occurred in the cafeteria of a company in Chungcheongnam-do Province, Korea, in October 2020, and to recommend measures to prevent similar outbreaks. Twenty-one patients with acute gastroenteritis, three food handlers, seven cooking utensils, and 12 preserved food samples were subjected to viral and bacterial analyses based on procedures described in the "Manual for Detection of Foodborne Pathogens at Outbreaks". Among 135 individuals who had been served the meals, 21 (15.6%) showed symptoms of nausea and vomiting within an hour of consuming the food. Bacillus cereus were isolated from 11 (52.4%) of the 21 patients, one food service employee, one item of cooking ware, and 12 preserved food samples. In addition, we confirmed the toxin genes CER, nheA, and entFM from the isolated B. cereus strains. Pulsed-field gel electrophoresis results indicated that all of the isolated B. cereus strains were closely related, with the exception of strains obtained from one patient and one sample of preserved food. These findings provide evidence to indicate that the isolated B. cereus originated from preserved foods and an unhygienic eating environment. This outbreak highlights that the provision of food in non-commercial food systems must be thoroughly managed. In addition, it emphasizes the necessity for the correct and timely identification of causal pathogens for tracing the cause of food poisoning outbreaks, and the need to preserve food under appropriate conditions. To prevent similar cases of food poisoning, it is necessary to investigate cases based on an epidemiological approach and share the findings.

Brain-type Natriuretic Peptide Ameliorates High-fat Diet-induced Hepatic Insulin Resistance (Brain-type natriuretic peptide (BNP)의 고지방 식이 유도에 의한 인슐린 저항성 개선 효과)

  • Dae Young Jung;Jeong Bin Park;Myeong Ho Jung
    • Journal of Life Science
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Brain-type natriuretic peptide (BNP) is a cardiac hormone that exerts cardiovascular and renal effects and regulates metabolic processes. In the current study, to determine the hepatic effects of BNP, we investigated whether it improves high-fat diet (HFD)-induced hepatic IR and characterized its possible mechanism. No significant differences in body weight, fat mass, or lean mass were observed between the saline- and BNP-treated groups of normal diet-and HFD-fed mice. During the clamp test, the BNP infusion into HFD-fed mice led to lower blood glucose levels and increased glucose infusion rates versus that into saline-treated HFD-fed mice. The BNP infusion also inhibited hepatic glucose production and decreased hepatic triglyceride levels concomitant with decreased expression of gluconeogenesis and lipogenesis-related genes, resulting in reduced levels of alanine aminotransferase and aspartate aminotransferase. BNP increased the phosphorylation of Akt and AMP-acti- vated protein kinase (AMPK) in the livers of HFD-fed mice compared to saline-fed HFD mice. The incubation of AML12 murine hepatocytes with BNP increased the basal levels of phosphorylated Akt and AMPK and recovered the phosphorylated Akt and phosphorylated AMPK levels reduced by palmitate treatment. Furthermore, BNP incubation prevented palmitate-induced increases in lipo- genesis gene expressions. Taken together, the current study's findings indicated that BNP ameliorates hepatic IR, resulting in reduced hepatic glucose production and hepatic steatosis.

Indoleamine 2,3-Dioxygenase in Hematopoietic Stem Cell-Derived Cells Suppresses Rhinovirus-Induced Neutrophilic Airway Inflammation by Regulating Th1- and Th17-Type Responses

  • Ferdaus Mohd Altaf Hossain;Seong Ok Park;Hyo Jin Kim;Jun Cheol Eo;Jin Young Choi;Maryum Tanveer;Erdenebelig Uyangaa;Koanhoi Kim;Seong Kug Eo
    • IMMUNE NETWORK
    • /
    • v.21 no.4
    • /
    • pp.26.1-26.28
    • /
    • 2021
  • Asthma exacerbations are a major cause of intractable morbidity, increases in health care costs, and a greater progressive loss of lung function. Asthma exacerbations are most commonly triggered by respiratory viral infections, particularly with human rhinovirus (hRV). Respiratory viral infections are believed to affect the expression of indoleamine 2,3-dioxygenase (IDO), a limiting enzyme in tryptophan catabolism, which is presumed to alter asthmatic airway inflammation. Here, we explored the detailed role of IDO in the progression of asthma exacerbations using a mouse model for asthma exacerbation caused by hRV infection. Our results reveal that IDO is required to prevent neutrophilic inflammation in the course of asthma exacerbation caused by an hRV infection, as corroborated by markedly enhanced Th17- and Th1-type neutrophilia in the airways of IDO-deficient mice. This neutrophilia was closely associated with disrupted expression of tight junctions and enhanced expression of inflammasome-related molecules and mucin-inducing genes. In addition, IDO ablation enhanced allergen-specific Th17- and Th1-biased CD4+ T-cell responses following hRV infection. The role of IDO in attenuating Th17- and Th1-type neutrophilic airway inflammation became more apparent in chronic asthma exacerbations after repeated allergen exposures and hRV infections. Furthermore, IDO enzymatic induction in leukocytes derived from the hematopoietic stem cell (HSC) lineage appeared to play a dominant role in attenuating Th17- and Th1-type neutrophilic inflammation in the airway following hRV infection. Therefore, IDO activity in HSC-derived leukocytes is required to regulate Th17- and Th1-type neutrophilic inflammation in the airway during asthma exacerbations caused by hRV infections.

Protective effect of Macleaya cordata isoquinoline alkaloids on lipopolysaccharide-induced liver injury in broilers

  • Jiaxin Chen;Weiren Yang;Hua Liu;Jiaxing Niu;Yang Liu;Qun Cheng
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.131-141
    • /
    • 2024
  • Objective: This experiment aimed to explore the protective action of dietary supplementation with isoquinoline alkaloids (IA) from Macleaya cordata on lipopolysaccharide (LPS)-induced liver injury in broilers. Methods: Total 216 healthy broilers were selected in a 21-d trial and assigned randomly to the following 3 treatments: control (CON) group, LPS group, and LPS+IA group. The CON and LPS groups were provided with a basal diet, whereas the LPS+IA group received the basal diet supplemented with 0.6 mg/kg Macleaya cordata IA. Broilers in LPS and LPS+IA groups were intraperitoneally injected with LPS (1 mg/kg body weight) at 17, 19, and 21 days of age, while those in CON group were injected with equivalent amount of saline solution. Results: Results showed LPS injection caused systemic and liver inflammation in broilers, inhibited immune function, and ultimately lead to liver injury. By contrast, supplementation of IA ameliorated LPS-induced adverse change in serum parameters, boosted immunity in LPS+IA group. Furthermore, IA suppressed the elevation of hepatic inflammatory cytokines and caspases levels induced by LPS, as well as the expressions of genes related to the toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88)/nuclear factor-kappa B (NF-κB) pathway. Conclusion: Dietary inclusion of 0.6 mg/kg Macleaya cordata IA could enhance immune function of body and inhibit liver damage via inactivating TLR4/MyD88/NF-κB signaling pathway in broilers.

Disease Resistance-Based Management of Alternaria Black Spot in Cruciferous Crops (병 저항성 기반 십자화과 작물의 검은무늬병 관리)

  • Young Hee Lee;Su Min Kim;Seoung Bin Lee;Sang Hee Kim;Byung-Wook Yun;Jeum Kyu Hong
    • Research in Plant Disease
    • /
    • v.29 no.4
    • /
    • pp.363-376
    • /
    • 2023
  • Alternaria black spots or blights in cruciferous crops have been devastating diseases worldwide and led to economic losses in broccoli, Chinese cabbage, kale, radish, rapeseed, etc. These diseases are caused by different Alternaria spp., including A. brassicae, A. brassicicola and A. raphani transmitted from infected seeds or insect vectors. Efforts to excavate disease resistance traits of cruciferous crops against Alternaria black spots or blights have been demonstrated. Genetic resource of disease resistance was investigated in the wild relatives of cruciferous crops, and different cultivars were screened under different inoculation conditions. Development of the disease-resistant lines against Alternaria black spots or blights was also tried via genetic transformation of the cruciferous crops using diverse plant defence-associated genes. Plant immunity activated by pre-treatment with chemicals, i. e. β-amino-n-butyric acid and melatonin, was suggested for reducing Alternaria black spots or blights in cruciferous crops. The disease resistance traits have also been evaluated in model plant Arabidopsis originating from different habitats. Various plant immunity-related mutants showing different disease responses from wild-type Arabidopsis provided valuable information for managing Alternaria black spots or blights in cruciferous crops. In particular, redox regulation and antioxidant responses altered in the Alternaria-infected mutants were discussed in this review.