• Title/Summary/Keyword: related genes

Search Result 3,137, Processing Time 0.039 seconds

Induces Vasodilatation of Rat Mesenteric Artery in vitro Mainly by Inhibiting Receptor-Mediated $Ca^{2+}$ -Influx and $Ca^{2+}$ -Release

  • Cao Yong-Xiao;Zheng Jian-Pu;He Jian-Yu;Li Jie;Xu Cang-Bao;Edvinsson Lars
    • Archives of Pharmacal Research
    • /
    • v.28 no.6
    • /
    • pp.709-715
    • /
    • 2005
  • The purpose of this study was to investigate the effect of atropine on peripheral vasodilation and the mechanisms involved. The isometric tension of rat mesenteric artery rings was recorded in vitro on a myograph. The results showed that atropine, at concentrations greater than 1$\mu$M, relaxed the noradrenalin (NA)-precontracted rat mesenteric artery in a concentration-dependent manner. Atropine-induced vasodilatation was mediated, in part, by an endothelium-dependent mechanism, to which endothelium-derived hyperpolarizing factor may contribute. Atropine was able to shift the NA-induced concentration-response curve to the right, in a non-parallel manner, suggesting the mechanism of atropine was not mediated via the ${\alpha}_1$-adrenoreceptor. The $\beta$-adrenoreceptor and ATP sensitive potassium channel, a voltage dependent calcium channel, were not involved in the vasodilatation. However, atropine inhibited the contraction derived from NA and $CaCl_2$ in $Ca^{2+}$-free medium, in a concentration dependent manner, indicating the vasodilatation was related to the inhibition of extracellular $Ca^{2+}$ influx through the receptor-operated calcium channels and intracellular $Ca^{2+}$ release from the $Ca^{2+}$ store. Atropine had no effect on the caffeine-induced contraction in the artery segments, indicating the inhibition of intracellular $Ca^{2+}$ release as a result of atropine most likely occurs via the IP3 pathway rather than the ryanodine receptors. Our results suggest that atropine-induced vasodilatation is mainly from artery smooth muscle cells due to inhibition of the receptor-mediated $Ca^{2+}$-influx and $Ca^{2+}$-release, and partly from the endothelium mediated by EDHF.

Identification of differentially displayed genes from a soybean (Giycine max) cultivar resistant to a strain of Pseudomonas aeroginosa

  • Cha, Hyeon-Wook;Kang, Sang-Gu;Chang, Moo-Ung;Park, Euiho
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.72.2-73
    • /
    • 2003
  • We found a soybean (Glycine max) cultivar 561 that was strongly resistant to a virulent bacterial strain of a Pseudomonas spp. Further identification revealed that the Pseudomonas spp. was a strain of Pseudomonas aeruginosa. Furthermore we identified specific genes involved in the resistance of soybean 561 and analyzed the pattern of gene expression against the Pseudomonas infection using differential-display reverse transcription PCR (DDRT-PCR). More than 126 cDNA fragments representing mRNAs were induced within 48 hours of bacteria inoculation. Among them, 28 cDNA fragments were cloned and sequenced. Twelve differentially displayed clones with open reading frames had unknown functions. Sixteen selected cDNA clones were homologous to known genes in the other organisms. Some of the identified cDNAs were pathogenesis-related genes (PR genes) and PR-like genes. These cDNAs included a putative calmodulin-binding protein, an endo-1,3-1,4-b-D-glucanase, a b-1,3-endoglucanase, a b-1,3-exoglucanase, a phytochelatin synthetase-like gene, a thiol pretense, a cycloartenol synthase, and a putative receptor-like sorineithreonine protein kinase. Among them, we found that four genes were putative pathogenesis-related genes (PR) induced significantly by the p. aeruginosa infection. These included a calmodulin-binding protein gene, a b-1,3-endoglucanase gene, a receptor-like sorine/threonine protein kinase gene, and pS321 (unknown function). These results suggest that the differentially expressed genes may mediate the strong resistance of soybean 561 to Pseudomonas aeruoginosa.

  • PDF

Identification of Differentially Displayed Genes of a Pseudomonas Resistant Soybean (Glycine max)

  • Kang, Sang-Gu;Cha, Hyeon-Wook;Chang, Moo-Dng;Park, Eui-Ho
    • The Plant Pathology Journal
    • /
    • v.19 no.5
    • /
    • pp.239-247
    • /
    • 2003
  • In Korea, a local soybean (Glycine max) genotype 56l. was found to be strongly resistant to a virulent bacterial strain of a Pseudomonas sp. SN239. Specific genes involved in the resistance of the soybean genotype 561 were identified and the pattern of gene expression against the Pseudomonas infection was analyzed using differential-display reverse transcription PCR (DDRT-PCR). More than 126 cDNA fragments representing mRNAs were induced within 48 hours of bacteria inoculation. Among them, 28 cDNA fragments were cloned and sequenced. Twelve differentially displayed clones with open reading frames had unknown functions. Sixteen selected cDNA clones were homologous to known genes of other organisms. Some of the identified cDNAs were pathogenesis-related (PR) genes and PR-like genes. These cDNAs included a putative calmodulin-binding protein; an endo-l,3-1,4-$\bate$-D-glucanase; a $\bate$-1,3-endoglucanase; a $\bate$-1,3-exoglucanase; a phytochelatin synthetase-like gene; a thiol protease; a cycloartenol synthase; and a putative receptor-like serine/threonine protein kinase. Among them, four genes were found to be putative PR genes induced significantly by the Pseudomonas infection. These included a calmodulin-binding protein gene, a $\bate$-1,3-endoglucanase gene, a receptor-like serine/threonine protein kinase gene, and pS321 (unknown function). These results suggest that the differentially expressed genes may mediate the strong resistance of soybean 561 to the strain SN239 of Pseudomonas sp.

Apoptosis-Induced Gene Profiles of a Myeloma Cell P3-X63-Ag8.653

  • Bahng, Hye-Seung;Chung, Yong-Hoon
    • IMMUNE NETWORK
    • /
    • v.6 no.3
    • /
    • pp.128-137
    • /
    • 2006
  • Background: Apoptosis is a physiologic phenomenon involved in development, elimination of damaged cells, and maintenance of cell homeostasis. Deregulation of apoptosis may cause diseases, such as cancers, immune diseases, and neurodegenerative disorders. The mouse myeloma cell P3-X63-Ag8.653 (v653) is an HGPRT deficient $(HGPRT^-)$ mutant strain. High dependency on de novo transcription and translation of aminopterin induced apoptosis of this cell seems to be an ideal experimental system for searching apoptosis-induced genes. Methods & Results: For searching apoptosis-related genes we carried out GE-array (dot blot), Affymetrix GeneChip analysis, Northern analysis and differential display-PCR techniques. The chip data were analyzed with three different programs. 66 genes were selected through Affymetrix GeneChip analyses. All genes selected were classified into 8 groups according to their known functions. They were Genes of 1) Cell growth/maintenance/death/enzyme, 2) Cell cycle, 3) Chaperone, 4) Cancer/disease-related genes, 5) Mitochondria, 6) Membrane protein/signal transduction, 7) Nuclear protein/nucleic acid binding/transcription binding and 8) Translation factor. Among these groups number of genes were the largest in the genes of cell growth/maintenance/death/enzyme. Expression signals of most of all groups were peaked at 3 hour of apoptosis except genes of Nuclear protein/nucleic acid binding/transcription factor which showed maximum signal at 1 hour. Conclusion: This study showed induction of wide range of proapoptotic factors which accelerate cell death at various stage of cell death. In addition apoptosis studied in this research can be classified as a type 2 which involves cytochrome c and caspase 9 especially in early stages of death. But It also has progressed to type 1 in late stage of the death process.

Genome analysis of Yucatan miniature pigs to assess their potential as biomedical model animals

  • Kwon, Dae-Jin;Lee, Yeong-Sup;Shin, Donghyun;Won, Kyeong-Hye;Song, Ki-Duk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.2
    • /
    • pp.290-296
    • /
    • 2019
  • Objective: Pigs share many physiological, anatomical and genomic similarities with humans, which make them suitable models for biomedical researches. Understanding the genetic status of Yucatan miniature pigs (YMPs) and their association with human diseases will help to assess their potential as biomedical model animals. This study was performed to identify non-synonymous single nucleotide polymorphisms (nsSNPs) in selective sweep regions of the genome of YMPs and present the genetic nsSNP distributions that are potentially associated with disease occurrence in humans. Methods: nsSNPs in whole genome resequencing data from 12 YMPs were identified and annotated to predict their possible effects on protein function. Sorting intolerant from tolerant (SIFT) and polymorphism phenotyping v2 analyses were used, and gene ontology (GO) network and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses were performed. Results: The results showed that 8,462 genes, encompassing 72,067 nsSNPs were identified, and 118 nsSNPs in 46 genes were predicted as deleterious. GO network analysis classified 13 genes into 5 GO terms (p<0.05) that were associated with kidney development and metabolic processes. Seven genes encompassing nsSNPs were classified into the term associated with Alzheimer's disease by referencing the genetic association database. The KEGG pathway analysis identified only one significantly enriched pathway (p<0.05), hsa04080: Neuroactive ligand-receptor interaction, among the transcripts. Conclusion: The number of deleterious nsSNPs in YMPs was identified and then these variants-containing genes in YMPs data were adopted as the putative human diseases-related genes. The results revealed that many genes encompassing nsSNPs in YMPs were related to the various human genes which are potentially associated with kidney development and metabolic processes as well as human disease occurrence.

Validation of exercise-response genes in skeletal muscle cells of Thoroughbred racing horses

  • Kim, Doh Hoon;Lee, Hyo Gun;Sp, Nipin;Kang, Dong Young;Jang, Kyoung-Jin;Lee, Hak Kyo;Cho, Byung-Wook;Yang, Young Mok
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.134-142
    • /
    • 2021
  • Objective: To understand the athletic characteristics of Thoroughbreds, high-throughput analysis has been conducted using horse muscle tissue. However, an in vitro system has been lacking for studying and validating genes from in silico data. The aim of this study is to validate genes from differentially expressed genes (DEGs) of our previous RNA-sequencing data in vitro. Also, we investigated the effects of exercise-induced stress including heat, oxidative, hypoxic and cortisol stress on horse skeletal muscle derived cells with the top six upregulated genes of DEGs. Methods: Enriched pathway analysis was conducted using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) tool with upregulated genes in horse skeletal muscle tissue after exercise. Among the candidates, the top six genes were analysed through geneMANIA to investigate gene networks. Muscle cells derived from neonatal horse skeletal tissue were maintained and subjected to exercise-related stressors. Transcriptional changes in the top six genes followed by stressors were investigated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Results: The inflammation response pathway was the most commonly upregulated pathway after horse exercise. Under non-cytotoxic conditions of exercise-related stressors, the transcriptional response of the top six genes was different among types of stress. Oxidative stress yielded the most similar expression pattern to DEGs. Conclusion: Our results indicate that transcriptional change after horse exercise in skeletal muscle tissue strongly relates to stress response. The qRT-PCR results showed that stressors contribute differently to the transcriptional regulation. These results would be valuable information to understand horse exercise in the stress aspect.

Association of Insulin-related Genes Expression with Carcass Weight in Loin Muscle of Korean Cattle (Hanwoo) (한우 등심조직 내 인슐린 조절 유전자의 발현이 도체중에 미치는 영향에 관한 연구)

  • Lim, Dajeong;Cho, Yong-Min;Chai, Han-Ha;Lee, Seung-Hwan;Choi, Bong-Hwan;Kim, Nam-Kuk
    • Journal of Life Science
    • /
    • v.25 no.1
    • /
    • pp.8-15
    • /
    • 2015
  • The peroxisome proliferator-activated receptor (PPAR) signaling pathway is well known as a candidate pathway related to meat quality in mammals. In particular, there are many studies on the relationship between the PPAR signaling pathway and intramuscular fat. However, recent studies have demonstrated that genes in the PPAR signaling pathway are associated with carcass weight in cattle. Among 48 genes in the PPAR signaling pathway, 16 genes are related to the insulin that regulates the adipocyte glucose metabolism and thus affects body weight. Therefore, we conducted an investigation to try to identify candidate genes associated with the carcass weight and relationships between the expressions of these 16 genes in the loin muscle of Hanwoo (Korean cattle). From regression analysis, the three genes (ACSL6, FADS2, and ILK) showed significant effects with regard to carcass weight (p<0.05). Finally, we analyzed the common regulators of the significant genes from pathway analysis. The significant genes are regulated by insulin as well as D-glucose. These findings show that the differentially expressed genes are possible candidate genes associated with carcass weight in the longissimus muscle of Korean cattle.

Muscle differentiation induced up-regulation of calcium-related gene expression in quail myoblasts

  • Park, Jeong-Woong;Lee, Jeong Hyo;Kim, Seo Woo;Han, Ji Seon;Kang, Kyung Soo;Kim, Sung-Jo;Park, Tae Sub
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.9
    • /
    • pp.1507-1515
    • /
    • 2018
  • Objective: In the poultry industry, the most important economic traits are meat quality and carcass yield. Thus, many studies were conducted to investigate the regulatory pathways during muscle differentiation. To gain insight of muscle differentiation mechanism during growth period, we identified and validated calcium-related genes which were highly expressed during muscle differentiation through mRNA sequencing analysis. Methods: We conducted next-generation-sequencing (NGS) analysis of mRNA from undifferentiated QM7 cells and differentiated QM7 cells (day 1 to day 3 of differentiation periods). Subsequently, we obtained calcium related genes related to muscle differentiation process and examined the expression patterns by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Results: Through RNA sequencing analysis, we found that the transcription levels of six genes (troponin C1, slow skeletal and cardiac type [TNNC1], myosin light chain 1 [MYL1], MYL3, phospholamban [PLN], caveolin 3 [CAV3], and calsequestrin 2 [CASQ2]) particularly related to calcium regulation were gradually increased according to days of myotube differentiation. Subsequently, we validated the expression patterns of calcium-related genes in quail myoblasts. These results indicated that TNNC1, MYL1, MYL3, PLN, CAV3, CASQ2 responded to differentiation and growth performance in quail muscle. Conclusion: These results indicated that calcium regulation might play a critical role in muscle differentiation. Thus, these findings suggest that further studies would be warranted to investigate the role of calcium ion in muscle differentiation and could provide a useful biomarker for muscle differentiation and growth.

The Relationship Between Acute Hepatopancreatic Necrosis Disease (AHPND) in Shrimp Litopenaeus vannamei and Vibrio parahaemolyticus Strains Isolated from Shellfish and Shrimp of the West Coast of Korea in 2019 (2019년 서해 연안 패류 및 양식 새우(Litopenaeus vannamei)에서 분리한 Vibrio parahaemolyticus 균주들과 새우 급성간췌장괴사병(AHPND)과의 연관성)

  • Jang, Gwang Il;Park, Jin Il;Oh, Eun-Gyoung;Kim, Sumi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.5
    • /
    • pp.752-760
    • /
    • 2020
  • Acute hepatopancreatic necrosis disease (AHPND), previously known as early mortality syndrome (EMS), is an emerging disease in shrimp caused by Vibrio parahaemolyticus. Some V. parahaemolyticus strains are associated with foodborne diseases in humans. To date, studies on the relationship between AHPND and pathogenic V. parahaemolyticus are very limited. In this study, we monitored the thermostable direct hemolysin-related hemolysin (trh) gene and AHPND-related genes, such as Photorhabdus insect-related (pir) genes, in 892 strains of V. parahaemolyticus isolated and identified in 24 areas of the West Coast of Korea from May to October 2019. The trh gene was detected in 9.6% of the isolates from short neck clam samples. However, the pirA and pirB genes related to AHPND were not found in any of the isolates despite using both duplex and nested PCR assays, suggesting that AHPND-related genes were nonexistent in the V. parahaemolyticus strains isolated. This study contributes to the current understanding of the relationship between AHPND and V. parahaemolyticus in Korea, as well as provides data on spatial and seasonal distributions of V. parahaemolyticus.

Network pharmacology analysis of Jakyakgamchotang with corydalis tuber for anti-inflammation (작약감초탕 가 현호색의 항염증 기전에 대한 네트워크 약리학적 분석)

  • Young-Sik Kim;Hongjun Kim;Han-bin Park;Seungho Lee
    • Herbal Formula Science
    • /
    • v.32 no.1
    • /
    • pp.39-49
    • /
    • 2024
  • Objectives : The purpose of this study was to investigate the molecular targets and pathways of anti-inflammatory effects of Jakyakgamchotang with corydalis tuber (JC) using network pharmacology. Methods : The compounds in constituent herbal medicines of JC were searched in TCM systems pharmacology (TCMSP). Target gene informations of the components were collected using chemical-target interactions database provided by Pubchem. Afterwards, network analysis between compounds and inflammation-related target genes was performed using cytoscape. Go enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed on inflammation-related targets using DAVID database. Results : 70 active compounds related to inflammation were identified, and 295 target genes related to the anti-inflammatory activity of the compound of JC were identified. In the Go biological process DB and KEGG pathway DB, "inflammatory response", "cellular response to lipopolysaccharide", "positive regulation of interleukin-6 production", and "positive regulation of protein kinase B. signaling", "positive regulation of ERK1 and ERK2 cascade", "positive regulation of I-kappaB kinase/NF-kappaB signaling", "negative regulation of apoptotic process", and "PI3K-Akt signaling pathway" were found to be mechanisms related to the anti-inflammatory effects related to the target genes of JC. The main compounds predicted to be involved in the anti-inflammatory effect of JC were quercetin, licochalcone B, (+)-catechin, kaempferol, and emodin. Conclusions : This study provides the molecular targets and potential pathways of JC on inflammation. It can be used as a basic data for using JC for various inflammatory disease in traditional korean medicine clinic.