• Title/Summary/Keyword: related alkaloids

Search Result 34, Processing Time 0.021 seconds

Roles of CYP1A1 and CYP2E1 Gene Polymorphisms in Oral Submucous Fibrosis

  • Yaming, Punyo;Urs, Aadithya Basavaraj;Saxena, Alpana;Zuberi, Mariyam
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3335-3340
    • /
    • 2016
  • Background: Oral submucous fibrosis (OSF) is a precancerous condition with a 4 to13% malignant transformation rate. Related to the habit of areca nut chewing it is mainly prevalent in South-east Asian countries where the habit of betel quid chewing is frequently practised. On chewing, alkaloids and polyphenols are released which undergo nitrosation and give rise to N-nitrosamines which are cytotoxic agents. CYP450 is a microsomal enzyme group which metabolizes various endogenous and exogenous chemicals including those released by areca nut chewing. CYP1A1 plays a central role in metabolic activation of these xenobiotics, whereas CYP2E1 metabolizes nitrosamines and tannins. Polymorphisms in genes that code for these enzymes may alter their expression or function and may therefore affect an individuals susceptibility regarding OSF and oral cancer. The present study was therefore undertaken to investigate the association of polymorphisms in CYP1A1 m2 and CYP2E1 (RsaI/PstI) sites with risk of OSF among areca nut chewers in the Northern India population. A total of 95 histopathologically confirmed cases of OSF with history of areca nut chewing not less than 1 year and 80, age and sex matched controls without any clinical signs and symptoms of OSF with areca nut chewing habit not less than 1 year were enrolled. DNA was extracted from peripheral blood samples and polymorphisms were analyzed by PCR-RFLP method. Gene polymorphism of CYP1A1 at NcoI site was observed to be significantly higher (p = 0.016) in cases of OSF when compared to controls. Association of CYP1A1 gene polymorphism at NcoI site and the risk of OSF (Odd's Ratio = 2.275) was also observed to be significant. However, no such association was observed for the CYP2E1 gene polymorphism (Odd's Ratio = 0.815). Our results suggest that the CYP1A1 gene polymorphism at the NcoI site confers an increased risk for OSF.

Inhibitory effects of Broussonetia kazinoki twig extract on allergic inflammatory reactions in TNF-𝛼/IFN-𝛾-stimulated HaCaT and IgE-sensitized RBL-2H3 cells (TNF-𝛼/IFN-𝛾로 자극된 HaCaT 및 IgE로 감작된 RBL-2H3 세포에서 닥나무 가지 추출물의 알러지 염증반응 억제 효과)

  • Won-Bin Bae;Eun-Hye Kim;Min-Ju Kim;Seun-Ah Yang
    • Food Science and Preservation
    • /
    • v.31 no.2
    • /
    • pp.307-314
    • /
    • 2024
  • Broussonetia kazinoki twig extract (BKT) is recognized for its antioxidant and anti-cancer effects and natural whitening properties. So, it is used as a raw material for cosmetics. B. kazinoki twig is also an edible raw material. B. kazinoki has been used in Asia for paper production and oriental medicine, has anti-diabetic effects, and contains various flavonoids and alkaloids. In this study, to evaluate the efficacy of BKT on allergic skin inflammatory responses, we investigated its effects on factors related to skin inflammation in HaCaT keratinocytes and allergic responses in RBL-2H3 cells. There was no cytotoxicity of the 70% ethanol extract against HaCaT and RBL-2H3 cells. In HaCaT cells, stimulation with tumor necrosis factor-alpha (TNF-𝛼) and interferon-gamma (IFN-𝛾) increased the production of several chemokines, including thymus and activation-regulated chemokine (TARC), macrophage-derived chemokine (MDC), and regulated on activation, normal T cell expressed and secreted (RANTES). However, it was observed that this elevation was notably mitigated in a concentration-dependent manner upon treatment with BKT. Furthermore, BKT treatment demonstrated a significant reduction of 𝛽-hexosaminidase and inflammatory cytokines TNF-𝛼 and IL-4 in IgE-sensitized RBL-2H3 cells. Thus, it is expected that BKT can be used as a natural cosmetic and food ingredient that effectively suppresses allergic inflammatory reactions.

Research Direction for Functional Foods Safety (건강기능식품 안전관리 연구방향)

  • Jung, Ki-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.4
    • /
    • pp.410-417
    • /
    • 2010
  • Various functional foods, marketing health and functional effects, have been distributed in the market. These products, being in forms of foods, tablets, and capsules, are likely to be mistaken as drugs. In addition, non-experts may sell these as foods, or use these for therapy. Efforts for creating health food regulations or building regulatory system for improving the current status of functional foods have been made, but these have not been communicated to consumers yet. As a result, problems of circulating functional foods for therapy or adding illegal medical to such products have persisted, which has become worse by internet media. The cause of this problem can be categorized into (1) product itself and (2) its use, but in either case, one possible cause is lack of communications with consumers. Potential problems that can be caused by functional foods include illegal substances, hazardous substances, allergic reactions, considerations when administered to patients, drug interactions, ingredients with purity or concentrations too low to be detected, products with metabolic activations, health risks from over- or under-dose of vitamin and minerals, and products with alkaloids. (Journal of Health Science, 56, Supplement (2010)). The reason why side effects related to functional foods have been increasing is that under-qualified functional food companies are exaggerating the functionality for marketing purposes. KFDA has been informing consumers, through its web pages, to address the above mentioned issues related to functional foods, but there still is room for improvement, to promote proper use of functional foods and avoid drug interactions. Specifically, to address these issues, institutionalizing to collect information on approved products and their side effects, settling reevaluation systems, and standardizing preclinical tests and clinical tests are becoming urgent. Also to provide crucial information, unified database systems, seamlessly aggregating heterogeneous data in different domains, with user interfaces enabling effective one-stop search, are crucial.

Identification of Allelopathic Substances from Polygonum hydropiper and Polygonum aviculare (여뀌.마디풀로부터 상호대립억제작용물질(相互對立抑制作用物質)의 분리(分離).동정(同定))

  • Woo, S.W.;Kim, K.U.
    • Korean Journal of Weed Science
    • /
    • v.7 no.2
    • /
    • pp.144-155
    • /
    • 1987
  • Water extracts of polygonum hydropiper and Polygonum aviculare completely inhibited the germination of lettuce seeds. Methanol extracts from these two species also inhibited the seed germination of lettuce (Lactuca sativa) and Oenothera odorata. Fifteen phenolic acids in total were identified by GLC from P. hydropiper and eighteen from P. aviculare. The most common phenolic acids identified from P. hydropiper were sinapic, salicylic+vanillic and ferulic acid presented in all the fractions. In addition, salicylic+vanillic, tannic+gallic, sinapic, ferulic and p-coumaric acid seemed to be important phenolic compounds in terms of quantity. However, salicylic+vanillic acids were the unique phenolic acids occurred in all the fractions of P. aviculare. The others such as tannic+gallic, sinapic, ferulic, p-coumaric acid, p-cresol and catechol present in large amount appeared also the important phenolic substances influencing allelopathic effects of P. aviculare. Linolenic acid and oxalic acid were the major fatty and organic acids in both plant species, presented in 2.38mg/g and 20.588mg/g in P. hydropiper, 3.70mg/g and 14.288mg/g in P. aviculare, respectively, which seem to be exhibiting allelopathic effects of these plants. Total alkaloids were presented in low amount such as 0.20% in P. hydropiper arid 0.22% in P. aviculare which may not be important elements. Pet. ether extracts were 2.42% in P. hydropiper and 1.65% in P. aviculare, which exhibit another potential for allelopathic effects that need further investigation. Various authentic phenolic compounds at different concentrations inhibited the germination of lettuce seed, indicating that the phenolic substances identified here may be directly related to biologically active substance.

  • PDF