• 제목/요약/키워드: reinforcing properties

검색결과 556건 처리시간 0.028초

폴리머 시멘트 슬러리에 의한 철근의 방청성능 (The Anti-Corrosion Properties of Coated Reinforcing Bar Using Polymer Cement Slurry)

  • 김영집;김연홍;윤보원;조영국;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.201-206
    • /
    • 2002
  • The purpose of this study is to improve the anti-corrosive properties of coated reinforcing bar using polymer cement slurry. Poymer cement slurry are prepared with three types of polymer dispersions and corrosion inhibiting admixture. And tested for corrosion accelerating tests such as immersion in NaCl 10% solution NaCl 10% solution spray, high temperature and pressure steam in condition of 8cycles, carbonation before and after, penetration of NaCl solution. From the test results, it is concluded that the anti-corrosive properties are considerably improved by coating using polymer cement slurry at surface of reinforcing bar. And this trend is marked by adding of corrosion inhibiting admixture. The difference of the anti-corrosive properties is hardly recognized according to types of polymer dispersions. The anti-corrosive properties of coated reinforcing bar using polymer foment slurry are improved to a great extent compared to those of plain reinforcing bar accordiy to increasing content of chloride ion in cement concrete.

  • PDF

이질 구조부 보강방법에 따른 혼합구조보의 휨거동 특성에 관한 연구 (A Study on the properties of flexural behavior according to reinforcing method of Composite Beams of different types of structure)

  • 임병호;박정민;김화중
    • 한국강구조학회 논문집
    • /
    • 제13권4호
    • /
    • pp.419-431
    • /
    • 2001
  • 본 연구에서는 단부 RC 중앙보 S조 혼합보에 대해 RC부 주근의 정착방법(플랜지 위에 직접 용접, 스터드 볼트 용접 정착) 과 이질구조부 (SRC 부)의 보강 방법에 따른 구조적 거동 분석을 고찰하였다. 이질구조부 보강방법으로는 무보강, 수직전단보강근 보강[D10-@50], 경사보강(X자형 보강), 수평보강1[웨브보강(0.3L)], 수평보강2[웨브보강(0.3L)], 수직보강[플랜지보강(0.3L)]과 같은 보강방법을 주요변수로 하여 구조적 특성을 상호 비교 분석하였다. 그 결과 보 주근의 정착방법에 따른 연성능력 및 내력 등과 같은 구조적 특성에는 큰 차이가 없었으며, 혼합구조보의 구조적 특성을 극대화시키기 위해서는 이질구조부를 수직보강한 경우와 2열 수평으로 보강한 방법이 가장 효과적인 것으로 나타났다.

  • PDF

이질구조부 보강판의 길이에 따른 혼합구조보의 특성에 관한 연구 (A Study on Properties of Composite Beams according to Length of Reinforcing Plate for Different Types of Structure)

  • 이승조;박정민;김화중
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.297-302
    • /
    • 2002
  • This paper investigated the properties of flexural behavior of composite beams (end-Reinforced concrete, center-Steel concrete) according to attaching length of main bars to flange, shear reinforcing length for different types of structure. In the preceding study, structural properties of composite beams were investigated according to shear span to depth ratio, attaching method of main bars and shear reinforcing method. Based on these results, a series of experiments was carried out according to attaching length of main bar & reinforcing length for different types of structure. Consequently, as attaching length of main bar and shear reinforcing length increased, composite beams represented higher strength, ductility index and stress mechanism distributed in connection zone of different types of structure.

  • PDF

그라파이트/구리 복합재료의 기계적 특성에 미치는 그라파이트 형상과 복합재료 제조방법의 영향 (Effects of Graphite Shape and Composite Fabricating Method on Mechanical Properties of Graphite/Copper Composites)

  • 손유한;한준현
    • 한국재료학회지
    • /
    • 제28권10호
    • /
    • pp.601-609
    • /
    • 2018
  • To study the effects of graphite shape and the composite fabricating method on the mechanical properties of graphite/copper (Gr/Cu) composites, a copper composite using graphite flakes or graphite granules as reinforcing phases is fabricated using mechanical mixing or electroless plating method. The mechanical properties of the Gr/Cu composites are evaluated by compression tests, and the compressive strength and elongation of the Gr/Cu composites using graphite granules as a reinforcing phase are compared with those of Cu composites with graphite flakes as a reinforcing phase. The compressive yield strength or maximum strength of the Gr/Cu composites with graphite granules as a reinforcing phase is higher than that of the composites using graphite flakes as a reinforcing phase regardless of the alignment of graphite. The strength of the composite produced by the electroless plating method is higher than that of the composite material produced by the conventional mechanical mixing method regardless of the shape of the graphite. Using graphite granules as a reinforcing phase instead of graphite flakes improves the strength and elongation of the Gr/Cu composites in all directions, and reduces the difference in strength or elongation according to the direction.

600 MPa급 고강도 일반 및 내진 철근의 미세조직, 경도와 인장 특성 (Microstructure, Hardness and Tensile Properties of 600 MPa-Grade High-Strength and Seismic Resistant Reinforcing Steels)

  • 서하늘;이상인;황병철
    • 한국재료학회지
    • /
    • 제27권9호
    • /
    • pp.477-483
    • /
    • 2017
  • This present study deals with the microstructure and tensile properties of 600 MPa-grade high strength and seismic resistant reinforcing steels. The high strength reinforcing steel (SD 600) was fabricated by Tempcore processing, while the seismic resistant reinforcing steel (SD 600S) was air-cooled after hot-rolling treatment. The microstructure analysis results showed that the SD 600 steel specimen consisted of a tempered martensite and ferrite-pearlite structure after Tempcore processing, while the SD 600S steel specimen had a fully ferrite-pearlite structure. The room-temperature tensile test results indicate that, because of the enhanced solid solution and precipitation strengthening caused by relatively higher contents of C, Mn, Si and V in the SD 600S steel specimen, this specimen, with fully ferrite-pearlite structure, had yield and tensile strengths higher than those of the SD 600 specimen. On the other hand, the hardness of the SD 600 and SD 600S steel specimens changed in different ways according to location, dependent on the microstructure, ferrite grain size, and volume fraction.

슬러리법에 의한 탄소섬유보강 시멘트복합체의 제조에서 보강섬유와 계면결착제와의 상관특성 (Characteristics Correlations Between Fiber-Reinforced and Interfacial Adhesion in Carbon fiber reinforced Cement composite Prepared by Slurry Method.)

  • 최응규
    • 한국건축시공학회지
    • /
    • 제2권3호
    • /
    • pp.131-138
    • /
    • 2002
  • The objective of the study is to examine the characteristic correlations between reinforcing carbon fiber and interfacial adhesion agent since the interfacial adhesion strength between reinforcing carbon fiber and matrices is believed to be an essential element influencing the physical properties in carbon fiber reinforced cement composite using slurry method. The integrity of interfacial adhesion between reinforcing fiber and cement not only affects the quality of fiber reinforced cement composite but also influences to a large degree the physical properties of the cement composite when producing carbon fiber reinforced cement composite using slurry method. Having analyzed the physical properties 1.e., water content, tensile strength, flexural strength and flexural toughness of carbon fiber reinforced cement composite specimens, C-PAM(cation polyacrylamide) was determined to be an optimum interfacial adhesion agent. The study has also demonstrated that interfacial adhesion strength varies largely on the content and type of the reinforcing fiber. Judging from magnified view of the tensile shear cross-section using VMS(video microscope system), interfacial adhesion strength between reinforcing fiber and matrices is affected by the type of interfacial adhesion agent. According to the result of the experiments, C-PAM was determined to be an ideal interfacial adhesion agent when using carbon fiber in producing carbon fiber reinforced cement composite with the optimum content of carbon fiber being established.

하이브리드 FRP 보강근의 형상개발과 부착성능 평가 (Development of Hybrid Fiber Reinforced Polymer Reinforcing Bars and Evaluation of the Bond Properties)

  • 박지선;박영환;유영준;김긍환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.629-632
    • /
    • 2006
  • The various rib geometry of hybrid fiber reinforced polymer (FRP) reinforcing bars were analyzed by finite element method. From the analysis result, two types of hybrid FRP reinforcing bars such as spiral and cross type with the same dimension of rib geometry were fabricated in this study. To evaluate the bond properties of them, direct pull-out test was performed. All testing procedures including specimens preparation, set-up of test equipments and measuring devices were made in accordance with the recommendations of CSA Standard S806-02. From the test results, it was found that cross type hybrid FRP reinforcing bars showed the highest bond strength than that of the others due to the higher relative rib area.

  • PDF

보강제 변화에 따른 실리콘 고무의 트래킹 열화 특성에 관한 연구 (A Study on Tracking Degradation Properties of Silicone Rubber due to Reinforcing Agent)

  • 이성일
    • 한국전기전자재료학회논문지
    • /
    • 제27권12호
    • /
    • pp.841-846
    • /
    • 2014
  • It found that the maximum temperature of the arc discharge occurred on the Silicone rubber sample significantly decreased with increasing the reinforcing agent. It was confirmed that the current value decreased with increasing the aluminium trihydrate($Al(OH)_3$) and the current value increased with reducing the primary resistance over time. Regarding these results, may be it is because the degradation due to the electro-conductive carbonization was improved and the properties of dielectric breakdown was reduced by the flame retardant reinforcing agent. It found that the electro-conductive carbonized road has not happened by increasing the flame retardant reinforcing agent. Regarding to the arc discharge, this study show that the arc arising near the lower electrode of sample has disappeared.

Effect of Reinforcing Materials on Properties of Molten Carbonate Fuel Cell Matrices

  • Moon, Young-Joon;Lee, Dokyol
    • The Korean Journal of Ceramics
    • /
    • 제2권3호
    • /
    • pp.142-146
    • /
    • 1996
  • The molten carbonate fuel cell matrices, which are usually made of high surface, fine particle size ${\gamma}-LiAlO_2$ are reinforced with coarse particles of the same material and alumina fibers. An the effects of reinforcing materials on pore characteristics, sintering properties and mechanical properties of the matrices are examined.Among the matrices examined, the highest mechanical reinforcement has been achieved in the one containing 10 wt.% coarse particles and 20 wt.% alumina fibers.

  • PDF

콘크리트 구조물의 비선형해석을 위한 재료모델 비교연구 (A Study on the Stress-Strain Relationships for Nonlinear Analysis of Concrete Structures)

  • 오병환;김영진;이형준;홍기중;박승진;임선택
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.65-70
    • /
    • 1994
  • Reinforced concrete and prestressed concrete structures consist of different materials, namely concrete, reinforcing steel and/or prestressing steel. Reinforcing and prestressing steels can be considered homogeneous materials, and their properties are generally well defined. Howefer, concrete is a heterogeous materials, and it is difficult to define its properties accurately. Both concrete and steel exhibit various nonlinear materials properties. The stress-strain relationship of concrete is not only nonlinear, but it differs in compression and tension. And, tensile cracking is one of the most importnat factors which contribute to the nonlinear behavior of reinforced concrete structrures. In this strudy, the various stress-strain relationships of concrete and reinforcing steel in nonlinear analysis of RC and PC structures are examined.

  • PDF