• 제목/요약/키워드: reinforcing performance

검색결과 629건 처리시간 0.024초

A computational platform for seismic performance assessment of reinforced concrete bridge piers with unbonded reinforcing or prestressing bars

  • Kim, T.H.;Park, J.G.;Kim, Y.J.;Shin, H.M.
    • Computers and Concrete
    • /
    • 제5권2호
    • /
    • pp.135-154
    • /
    • 2008
  • This paper presents a nonlinear finite element analysis procedure for the seismic performance assessment of reinforced concrete bridge piers with unbonded reinforcing or prestressing bars. A computer program named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) is used to analyze reinforced concrete structures; this program was also used in our study. Tensile, compressive and shear models of cracked concrete and models of reinforcing and prestressing steel were used account for material nonlinearity of reinforced concrete. The smeared crack approach was incorporated. To represent the interaction between unbonded reinforcing or prestressing bar and concrete, an unbonded reinforcing or prestressing bar element based on the finite element method was developed in this study. The proposed numerical method for the seismic performance assessment of reinforced concrete bridge piers with unbonded reinforcing or prestressing bars is verified by comparison of its results with reliable experimental results.

하이브리드 보강기법을 활용한 고강도 콘크리트 구조 부재의 성능 향상 (Enhancing the Performance of High-Strength Concrete Members Using Hybrid Reinforcing Technique)

  • 양준모
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.479-480
    • /
    • 2010
  • 콘크리트 구조물의 고성능, 고내구성화를 위해 콘크리트 뿐만 아니라 보강 재료에 대한 성능 향상이 요구되고 있다. 본 연구에서는 고성능의 보강재료를 복합적으로 적용하여 고강도 콘크리트 구조물의 성능 극대화를 도모하는 하이브리드 보강기법에 대한 연구를 수행하였다.

  • PDF

고강도 및 내진용 철근의 굽힘성능 평가 (Bending performance evaluation of high strength and seismic purpose reinforcing bars)

  • 김희동
    • 한국산학기술학회논문지
    • /
    • 제18권9호
    • /
    • pp.492-498
    • /
    • 2017
  • 본 연구는 다양한 구조적 변수에 따른 고강도 및 내진용 이형철근의 굽힘가공 성능을 실험적으로 평가하는데 그 목적이 있다. 굽힘성능에 대한 실험적 연구수행을 위해 이형철근의 강종 및 강도, 직경, 굽힘가공 각도 및 내면 반지름 등을 변수로 하여 시험체를 제작하였다. 시험은 각 변수별 원 소재 철근에 대한 1차 인장강도시험, 원 소재 철근에 대한 1차 굽힘시험과 1차 굽힘시험 철근을 대상으로 한 2차 굽힘시험 그리고 2차 굽힘시험 이후 가력이 가능한 시험체를 대상으로 한 2차 인장강도시험을 수행하였다. 금번 고강도 및 내진용 철근에 대한 실험적 연구결과 항복강도 500 MPa 및 직경 D13 이하 이형철근은 굽힘각도 $135^{\circ}$, 내면 반지름 2db의 경우에도 1차 굽힘가공 후 인장측 표면결함은 나타나지 않았으며, 이형철근의 강도와 직경이 증가할수록 굽힘가공 성능이 저하 하는 것으로 나타났다. 그리고 본 연구에서 수행된 시험에서는 일반용 철근과 특수 내진용 철근의 시험결과 비교에서 두 이형철근 간에 유의미한 구조적 성능 차이는 확인하지 못하였다.

Structural Performance of Steel Pipe Splice for SD500 High-strength Reinforcing Bar under Cyclic Loading

  • Kim, Hyong-Kee
    • Architectural research
    • /
    • 제10권1호
    • /
    • pp.13-23
    • /
    • 2008
  • It is the purpose of this study to evaluate the structural performance of steel pipe splice for SD500 high-strength reinforcing bar, through a cyclic loading test. The experimental variables adopted in this study include the development length of rebar, the type of sleeve, and size of reinforcing bar, among others. The results of this study showed that the developed steel pipe splice system for SD500 high-strength reinforcing bar, retained the structural performance required in domestic, ACI and AIJ code. It is considered that the study result presented in this paper can be helpful in developing a reasonable design method for a steel pipe splice system for SD500 high-strength reinforcing bar.

콘크리트 침투강화형 성능개선재 개발 (Development for Performance Improving Agent of Penetration in Reinforcing Applied on Concrete)

  • 김도겸;고경택;류금성;김방욱;김성욱;이장화
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.781-786
    • /
    • 2002
  • We develop the performance improving agent of penetration reinforcing applied on concrete by which main components use compounds of metal alkoxide and silicate(Ti). Also, we investigate on the type and amount of organic solvent which need the hydrolysis and water condensation reaction of Ti. The penetration reinforcing agent developed this study can penetrate deeper than 50mm without relation to concrete strength. Also the performance improving agent composed of the combination of Ti and organic solvent A, improve performance in keeping out or removement of deterioration material. waterproof and strength.

  • PDF

굵은골재의 최대치수에 따른 고성능 콘크리트의 간극통과성 (Passing Performance of HPC Between Reirforcing Bar with Maximum Size of Coarse Aggregate)

  • 윤섭;백대현;김정빈;박창수;이성연;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.129-132
    • /
    • 2006
  • This paper is to investigate passing performance of high performance concrete between reinforcing bar depending on maximum size of coarse aggregates. Increase in maximum size of coarse results in decrease in water demand and sand to aggregate to secure target slump flow. The larger the maximum size of coarse aggregates is, the denser the space between reinforcing bar is, the amount of concrete passed through the reinforcing bar cage shows to decrease. HPC has favorable passing performance, regardless of aggregate size, when only vertical reinforcing bar is arranged. Whereas, when vertical and horizontal reinforcing bar is arranged at the same time, proper space between reinforcing bar is considered larger than 32mm in case of using 20mm coarse aggregate, 38mm in case of using 25mm aggregate. The increase in maximum size of coarse aggregate leads to increase compressive strength slightly. Length change shows to be decreased with the increase in maximum size of coarse aggregate.

  • PDF

원전구조물의 고강도철근 적용을 위한 구조적 목표성능분석 (Analysis of the Structural Target Performance in order to Apply High-Strength Reinforcing Bars for the Nuclear Power Plant Structures)

  • 이병수;방창준;이한우;임상준
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.195-196
    • /
    • 2012
  • Because of the high level of the safety and durability, a lot of reinforcing bars is placed in the concrete structure of the Nuclear Power Plant. But the overcrowding re-bars cause some problems during the construction as the diseconomy, construction delay, quality deterioration, and so on. These problems can be solved by applying the high-strength reinforcing bars to NPP structure. To achieve this, after analysing the structural target performance like the control of cracks, adherence, shear, torsion, development of reinforcement and earthquake-resistance, the results of the analysis will be reflected in the structural performance evaluation test.

  • PDF

섬유복합재봉(FRP ROD)과 고강도 모르터를 이용한 철근 콘크리트 구조물의 휨 보강공법(MFRI) 공법 (Reinforcing System(MFRI) for Concrete Structure using FRP ROD & High-performance Mortar)

  • 배기선;박상훈;이상욱
    • Composites Research
    • /
    • 제18권4호
    • /
    • pp.59-65
    • /
    • 2005
  • This report is on the Reinforcing System(MFRI) for Concrete Structure using FRP ROD & High-Performance Mortar. The main characteristic of this system is as follow. First, the fiber rods in this system have seven times greater tensile strength than general reinforcing steel bars(re-bar) and the weight is a fifth lighter. Camels coated on the fiber rods' surfaces to improve adhesive strength and pull-out strength. Second, high strength shotcrete mortar is has very good workability and low rebound rate. After installing the Fiber Rods, Shotcrete mortar Is applied or sprayed to finish reinforcement. Finally, MFRI system has excellent fire-resisting performance and sogood tolerance against external environment by inserting fiber rods and reinforcing materials into mortar which has high compressive strength. It is applied to bridge slab, utility box and tunnel of civil engineering works, and beam and slab of building structures.

Influence of different fatigue loads and coating thicknesses on service performance of RC beam specimens with epoxy-coated reinforcement

  • Wang, Xiao-Hui;Gao, Yang;Gao, Run-Dong;Wang, Jing;Liu, Xi-La
    • Computers and Concrete
    • /
    • 제19권3호
    • /
    • pp.243-256
    • /
    • 2017
  • Epoxy-coated reinforcing bars are widely used to protect the corrosion of the reinforcing bars in the RC elements under their in-service environments and external loads. In most field surveys, it was reported that the corrosion resistance of the epoxy-coated reinforcing bars is typically better than the uncoated bars. However, from the experimental tests conducted in the labs, it was reported that, under the same loads, the RC elements with epoxy-coated reinforcing bars had wider cracks than the elements reinforced with the ordinary bars. Although this conclusion may be true considering the bond reduction of the reinforcing bar due to the epoxy coating, the maximum service loads used in the experimental research may be a main reason. To answer these two phenomena, service performance of 15 RC beam specimens with uncoated and epoxy-coated reinforcements under different fatigue loads was experimentally studied. Influences of different coating thicknesses of the reinforcing bars, the fatigue load range and load upper limit as well as fatigue load cycles on the mechanical performance of RC test specimens are discussed. It is concluded that, for the test specimens subjected to the comparatively lower load range and load upper limit, adverse effect on the service performance of test specimens with thicker epoxy-coated reinforcing bars is negligible. With the increments of the coating thickness and the in-service loading level, i.e., fatigue load range, load upper limit and fatigue cycles, the adverse factor resulting from the thicker coating becomes noticeable.

An Experimental Study on the Evaluation of Shear Performance of PVA Fiber Reinforced RC Deep Beam with High Strength Headed Rebar

  • Kim, Seunghun;Lee, Kyuseon;Lee, Yongtaeg
    • Architectural research
    • /
    • 제19권4호
    • /
    • pp.109-115
    • /
    • 2017
  • This study is done to evaluate how existence of shear-span ratio and shear reinforcing bar effects on shear performance from through shear experiment using PVA fiber reinforced ferroconcrete building. Ratio of shear-span was set 1, 1.7, and arrangement of shear reinforcing bar was set with KCI2012 regulation. In result, subject with less shear-span ratio, and shear reinforcing bar with arrangement of bar shows high stiffness. Subjects with high shear-span ratio show large difference depending on existence of shear reinforcing bar. Therefore, theoretical shear strength followed by CEB code underestimates experimental shear strength by 43.9%. Shear strength of the deep beam with headed bars is more affected by the bearing strength of head than the bond strength of bar.