• Title/Summary/Keyword: reinforcing index

Search Result 68, Processing Time 0.03 seconds

Analyses on the Factors Related to Stages of Dietary Behavioral Changes among Child Bearing Aged Women (가임여성에서 식행동 변화단계에 따른 식생활 요인 분석)

  • 권성옥;오세영
    • Journal of Nutrition and Health
    • /
    • v.36 no.7
    • /
    • pp.759-768
    • /
    • 2003
  • This study examined the factors related to stages of dietary behavioral changes among 1449 child bearing aged women (mean age $\pm$ SD = 25.6 $\pm$ 5.3 years) residing in large cities. A self administered questionnaire was used to assess stages of dietary behavioral change, meal balance and regularity, food availability, nutrition knowledge, body mass index, nutrient intake, and psycho-social factors including self efficacy, perceived benefits and barriers, social modeling. Undesirable dietary behaviors (precontemplation and contemplation) were shown among 45.1-57.4% of the participants, among those, 33.4-43.0% were precontemplators. Participants' self efficacy scores associated with dietary changes were higher in specific situations (3.42) as compared to general situations (2.86). Similarly, they appeared to perceive more benefits (3.86) rather than barriers (2.76) by changing their inappropriate eating habits. Perception and accuracy scores of nutrition knowledge were relatively high, indicating 90.9 and 80.1, respectively. In terms of food availability at home, fresh fruits received the highest score, followed by milk and milk products, vegetables, meat, alcoholic beverages and soft drinks. In social modeling assessment, family members, as compared to friends, appeared to have better dietary habits. Stages of dietary behavioral change assessed in terms of meal regularity were associated with nutrient intake, showing higher energy and carbohydrate intakes but lower fat intake among those who belonged to the action and maintenance stage. They also presented higher self efficacy and perceived more benefits and less barriers regarding the change of undesirable eating habits. Fresh meat and vegetables were more available among those maintaining desirable dietary habits. Results of this study presented the significant relations of motivational and reinforcing social factors with stages of dietary behavioral changes and a need for the development of tailored nutrition education program considering these factors for child-bearing aged Korean women.

Detection of flexural damage stages for RC beams using Piezoelectric sensors (PZT)

  • Karayannis, Chris G.;Voutetaki, Maristella E.;Chalioris, Constantin E.;Providakis, Costas P.;Angeli, Georgia M.
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.997-1018
    • /
    • 2015
  • Structural health monitoring along with damage detection and assessment of its severity level in non-accessible reinforced concrete members using piezoelectric materials becomes essential since engineers often face the problem of detecting hidden damage. In this study, the potential of the detection of flexural damage state in the lower part of the mid-span area of a simply supported reinforced concrete beam using piezoelectric sensors is analytically investigated. Two common severity levels of flexural damage are examined: (i) cracking of concrete that extends from the external lower fiber of concrete up to the steel reinforcement and (ii) yielding of reinforcing bars that occurs for higher levels of bending moment and after the flexural cracking. The purpose of this investigation is to apply finite element modeling using admittance based signature data to analyze its accuracy and to check the potential use of this technique to monitor structural damage in real-time. It has been indicated that damage detection capability greatly depends on the frequency selection rather than on the level of the harmonic excitation loading. This way, the excitation loading sequence can have a level low enough that the technique may be considered as applicable and effective for real structures. Further, it is concluded that the closest applied piezoelectric sensor to the flexural damage demonstrates higher overall sensitivity to structural damage in the entire frequency band for both damage states with respect to the other used sensors. However, the observed sensitivity of the other sensors becomes comparatively high in the peak values of the root mean square deviation index.

Suggestion of Segregation Evaluation Method based on Evaluation Index for Segregation(EIS) (재료분리 평가정수(EIS)에 의한 재료분리 평가법의 제안)

  • Han, Cheon-Goo;Kim, Gi-Cheol;Park, Byung-Kwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.923-926
    • /
    • 2008
  • Currently more high flow and high performance concrete is used for construction of buildings in the world. However, when high flow and high performance concrete put high performance water reducing agent in quantity to improve flow, it has a negative effect on concrete structures since segregation arises from it though flow will be improved. There are naked-eye observation, coarse aggregate washing test, L Flow test for permeation among reinforcing rods and measurement of viscosity to judge concrete segregation resistance. However, it is difficult to apply them to practical affairs since they are very complicated and troublesome. Therefore, the study analyzed EIS dividing slump flow value into slump value, how to valuate concrete segregation resistance more easily, on the basis of the existing reference materials to propose EIS. As the results, in the event of high flow concrete, it is desirable that EIS value is prescribed to be less than 2.5 at the time of managing segregation. Also, at the time of prescribing EIS with performance, it is judged that it is desirable to manage segregation as less than 2.2 (Grade 1), 2.2$\sim$2.4 (Grade 2) and more than 2.6 (Grade 3).

  • PDF

Food Functionality of Collagenous Protein Fractions Recovered from Fish Roe by Alkaline Solubilization (어류 알로부터 알칼리 가용화공정을 통해 회수한 Collagenous Protein 획분의 식품 기능특성)

  • Yoon, In Seong;Kim, Jin-Soo;Heu, Min Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.4
    • /
    • pp.351-361
    • /
    • 2018
  • This study investigated the potential of collagenous protein fractions (CPFs) as functional foods. The specific CPFs studied were recovered from the roe of bastard halibut (BH), Paralichthys olivaceus; skipjack tuna (ST), Katsuwonus pelamis; and yellowfin tuna (YT), Thunnus albacares through the alkaline solubilization process at pH 11 and 12. The buffer capacity, water-holding capacity and solubility of CPFs with pH-shift treatment were significantly better at alkaline pH (10-12) than at acidic pH (2.0). At pH-shift treatment (pH 2 and 12), the foaming capacities of CPFs from ST and YT were improved compared to those of controls, but they were unstable compared to BH CPFs. The emulsifying activity index (EAI, $m^2/g$ protein) of CPFs (controls) was 16.0-21.1 for BH, 20.1-23.9 for ST and 9.3-13.7 for YT (P<0.05). CPFs adjusted to pH 12 showed improved EAI and YT CPFs showed significantly greater emulsifying ability than those from BH and ST. CPFs recovered from fish roe are not only protein sources but also have a wide range of food functionalities, confirming the high availability of fish sausage and surimi-based products as protein or reinforcing materials for functional foods and alternative raw materials.

Asian Dust Transport during Blocking Episode Days over Korea

  • Moon, Yun-Seob;Kim, berly-Strong;Kim, Yoo-Keun;Lim, Yun-Kyu;Oh, In-Bo;Song, Sang-Keun;Bae, Joo-Hyon
    • Journal of Environmental Science International
    • /
    • v.11 no.2
    • /
    • pp.111-120
    • /
    • 2002
  • Asian dust(or yellow sand) occurs mainly in spring and occasionally in winter in east Asia, when the weather conditions are under an upper trough/cut-off low and surface high/low pressure system during blocking episode days associated with the stationary patterns of the upper level jet stream. The transport mechanism for Asian dust during the blocking episode days in spring 2001 was analyzed using the TOMS aerosol index and meteorological mesoscale model 5(MM5). Based on the E vector, an extension of an Eliassen-Palm flux, the blocking episode days were found to be associated with the development of an upper cut-off low and surface cyclones. Concurrently, the occurrence of dust storms was also determined by strong cold advection at the rear of a jet streak, which exhibited a maximum wind speed within the upper jet stream. As such, the transport mechanism for Asian dust from China was due to advection of the isentropic potential vorticity(IPV) and isentropic surfaces associated with tropopause folding. The transport heights for Asian dust during the blocking episode days were found to be associated with the distribution of the isentropes below the IPV At the same time, lee waves propagated by topography affected the downward motion and blocking of Asian dust in China. The Asian dust transported from the dust source regions was deposited by fallout and rain-out with a reinforcing frontogenesis within a surface cyclone, as determined from satellite images using TOMS and GMS5. Accordingly, these results emphasize the importance of forecasting jet streaks, the IPV, and isentropes with geopotential heights in east Asia.

Effect of Corrosion Level and Crack Width on the Bond-Slip Behavior at the Interface between Concrete and Corroded Steel Rebar (부식 수준 및 균열폭에 따른 부식된 철근과 콘크리트 계면의 부착-미끄러짐 거동 )

  • Sang-Hyeon Jo;Seong-Hoon Kee;Jung-Jae Yee;Changkye Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.54-63
    • /
    • 2023
  • In this paper, the effect of corrosion level and crack width on the cohesive strength-slip behavior of corroded steel rebar and concrete interface is conducted. The existing studies mainly focus on the decrease in bond strength with respect to the level of corrosion; there are, however, few studies on the decrease in cohesive strength according to the crack width of the concrete surface due to corrosion. Therefore, in this study, a series of tests for the cohesive strength, slip behavior and mass loss of the reinforcing bar is evaluated at the surface of corroded rebar and concrete. It is found that the tendency to decrease the bond strength is closely related to the crack width rather than the corrosion level. Hence, to determine the degradation performance for the bond strength-slip behavior relation, the occurrence of cracks on the concrete surface can be a suitable index.

Critical Strengthening Ratio of CFRP Plate Using Probability and Reliability Analysis for Concrete Railroad Bridge Strengthened by NSM (확률.신뢰도 기법을 적용한 CFRP 플레이트 표면매립보강 콘크리트 철도교의 임계보강비 산정)

  • Oh, Hong-Seob;Sun, Jong-Wan;Oh, Kwang-Chin;Sim, Jong-Sung;Ju, Min-Kwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.681-688
    • /
    • 2009
  • The railroad bridges have been usually experienced by vibration and impact in service state. With this reason, it is important that the effective strengthening capacity should be considered to resist the kind of service loading. In this study, NSM strengthening technique is recommended for the concrete railroad bridge because of its better effective resistance for dynamic loading condition and strengthening cost than the conventional externally bonded strengthening using fiber sheet. However, to widely apply NSM method for the concrete railroad bridge, it needs that the strengthening ratio has to be reasonably evaluated with geometrical and material uncertainties, especially for the concrete bridge under long-term service state without the apparent design history and detail information such as concrete compressive strength, reinforcing ratio, railroad characteristics. The purpose of this study is to propose the critical strengthening ratio of CFRP plate for the targeted concrete railroad bridge with uncertainties of deterioration of the structures. To do this, Monte Carlo Simulation (MCS) for geometrical and material uncertainties have been applied so that this approach may bring the reasonable strengthening ratio of CFRP plate considering probabilistic uncertainties for the targeted concrete railroad bridge. Finally, the critical strengthening ratio of NSM strengthened by CFRP plate is calculated by using the limit state function based on the target reliability index of 3.5.

Flexural Behavior of RC Beams Strengthened with Steel Strand and Carbon Fiber Sheet (강연선 및 탄소섬유쉬트로 보강된 철근 콘크리트 보의 휨거동 특성)

  • 양동석;박선규;이용학
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.216-222
    • /
    • 2002
  • With deterioration of the nation's infrastructure comes the growing, need for effective means of rehabilitating structures. Possibly one for the most challenging tasks is to upgrade the overall capacity of concrete structure. Therefore, considerable efforts are still being made to develop new construction materials. Rehabilitation of damaged RC structures occasionally requires the removal and replacement of concrete in the tension zone of the structural members. Typical situation where the tension zone repair is necessary is when the concrete in the tension zone in beams or slabs has spalled off as a result of corrosion in the bottom reinforcing bars or due to extensive fire. The rehabilitation of such conditions normally involves the removal of the concrete beyond the reinforcement bars, cleaning or replacing the tensile bars and reinstatement of concrete to cover the steel bars the original shape and size. This study focused on the flexural behavior of reinforced concrete beams strengthened by steel strand and carbon fiber sheet in the tension zone. The properties of beams are 15$\times$25 cm rectangular and over a 200cm span. Test parameters in this experimental study were strengthening methods, jacking volume, the number of sheet. We investigated the flexural behavior of simply supported RC beams which are strengthened with the carbon fiber sheet, monotonic loads. Attention is concentrated upon overall bending capacity, deflection, ductility index, failure mode and crack development of repaired and rehabilitated beams.

Reliability of Load-Carrying Capacity of RC Deep Beams (철근콘크리트 깊은 보의 내하력에 대한신뢰도 평가)

  • Cheon Ju-Hyun;Kim Tae-Hoon;Lee Sang-Cheol;Shin Hyun-Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.955-962
    • /
    • 2005
  • Still no accurate theory exists for predicting ultimate shear strength of deep reinforced concrete beams because of the structural and material non-linearity after cracking. Currently, the load capacity assesment is performed for the upper structure of the bridges and containing non-reliability in the applications and results. The purpose in this study is to evaluate analytically the complex shear behaviors and normal strength for the reinforced concrete deep beams and to offer the accuracy load capacity assesment method based on the reliability theories. This paper presents a method for the load capacity assesment of reinforcement concrete deep beams using nonlinear finite element analysis. A computer program named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material non-linearity is taken Into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. From the results, determine the reliability index for the failure base on the Euro Code. Then, calculate additional reduction coefficient to satisfy the goals from the reliability analysis. The proposed numerical method for the load capacity assesment of reinforced concrete deep beams is verified by comparison with the others methods.

Effects of Bar Deformation Height on Bond Degradation Subject to Cyclic loading (반복하중시 철근 마디높이에 따른 부착 손상특성)

  • Lee, Jae-Yuel;Kim, Byong-Kook;Hong, Gi-Suop;Choi, Oan-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • One of the reasons for brittle failure in reinforced concrete structures subjected to severe earthquake is due to large local bond-slippage of bars resulting in fast bond degradation between reinforcing bars and concrete. This study aims to evaluate effects of bar deformation height on bond performance, specially, bond degradation under cyclic loading. Bond test specimens were constructed with machined bars with high relative rib areas. The degree of confinement by transverse bars is also another key parameters in this bond test. From test results, amounts of energy dissipation are calculated and compared for each parameter. Test results show that bond strength and stiffness drops significantly as cycles increases. The confinement and high relative rib area are effective to delay bond degradation, as the reduction of bond strength of cyclic loading compared to monotonic loading decreased for bars with large confinement and high relative rib areas. The energy dissipation also increases as the degree of confinement and relative rib area increases. However, tested bars with very high rib areas show that the bond may be damaged at relatively small slip because of high stiffness. The study will help to understand the bond degradation mechanism due to bar deformation height under cyclic loading and be useful to develop new deformed bars with high relative rib areas.