• Title/Summary/Keyword: reinforcing effect

Search Result 901, Processing Time 0.028 seconds

A Foundational Study on Effect of Siliceous Sealer for Reinforcement of Concrete Surface Layer (규산질계 액상형 바탕강화재의 콘크리트 표층부 보강특성에 관한 기초적 연구)

  • 최성민;곽규성;윤우옥;김상갑;오상근;안상덕
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.671-676
    • /
    • 1998
  • This study deals with the effect on penetration properties of siliceous ion througth the mortar applicated by the waterproofing coating materials of siliceous seler liquid type. The tests of properties for reinforcing effect in mortar substrate surface layer are five kinds of water permeability, absorption, compressive strength, surface layer strength, pH content and chemical attack effect. Water permeability of mortar coated siliceous sealer in very than that of plane mortar. compressive strength of mortar coated siliceous sealer in larger than that of plane mortar about 10%.

  • PDF

The effect of Astragali Radix Ethanol extract on Murine CD4 T cells′ Cytokine Profiles in vitro

  • Hee Kang;Bae Hyun Su;Ahn Kyoo Seok
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.5
    • /
    • pp.1330-1334
    • /
    • 2003
  • Astragali Radix(AR), one of the strong tonic herbs, is known to improve immunological responses in mice and human. In this study, AR's ai-reinforcing effect was examined in the context of CD4/sup +/ T cells' TCR/CD3 induced activation responses. In order to evaluate the direct effect of AR on helper T cells, CD4/sup +/ T cells are isolated using magnetic bead and their proliferation and CD69 expression in AR treated medium were assessed with anti-CD3/anti-CD28 activation for 48h. CD4 T cells' proliferation was slightly increased but there was little effect on CD69 expression. RT PCR and ELISA equally demonstrated that IL-2 and IL-4 production was increased but IFN-ν was down-regulated. This shows AR ethanol extract favors Th2 cytokine profile under neutral conditions.

Bond Strength of Super-CFRP Rod in Concrete

  • Seo, Sung-Tag
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.29-34
    • /
    • 2006
  • Elastic modulus, tensile and bond capacities are important factors for developing an effective reinforcing action of a flexural member as a reinforcing material for concrete structures. Reinforcement must have enough bond capacity to prevent the relative slip between concrete and reinforcement. This paper presents an experimental study to clarify the bond capacity of prestressed carbon fiber reinforced polymer(CFRP) rod manufactured by an automatic assembly robot. The bond characteristics of CFRP rods with different pitch of helical wrapping were analyzed experimentally. As the result, all types of CFRP rods show a high initial stiffness and good ductility. The mechanical properties of helical wrapping of the CFRP rods have an important effect on the bond of these rods to concrete after the bond stress reached the yield point. The stress-slip relationship analyzed from the pull-out test of embedded cables within concrete was linear up to maximum bond capacity. The deformation within the range of maximum force seems very low and was reached after approximately 1 mm. The average bond capacity of CF20, CF30 and CF40 was about 12.06 MPa, 12.68 MPa and 12.30 MPa, respectively. It was found that helical wrapping was sufficient to yield bond strengths comparable to that of steel bars.

The comparision of fatigue behavior of $CO_2$ plug weld and resistance spot weld (저항점용접과 $CO_2$ 플러그용접의 피로거동 연구)

  • Jeong, Won-Uk;Jeong, Yeon-Su;Kang, Seong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.554-561
    • /
    • 1998
  • Vehicle body structures are formed by thousands of spot welds and fatigue failure of vehicle structures occur near the spot welds after driving a long way at a durability test road. It is necessary to know accurately the reason of the fatigue failure of the spot weld in the developing stage in order to reinforce it. Many investigations have been done regarding the strength of spot welded joints, contributing to understand its fatigue strength. In developing process, a fatigue failed spot welded area can be repaired by $CO_2$ welding or another method to continue the test. To know the effect of reinforcing these welds, several methods of welding were analyzed and compared to spot welding. With the results of this test, the appropriate repair method can be used instead of spot welding during the development of new car and best design guide can be given for the strength. In this study, fatigue and static tensile tests are made and microstructure is investigated for the purpose of estimating the strength of welded joints by using spot welded and $CO_2$ plug welded specimens. The tested specimens are of two types : Tensile-shear type(TS) and L-tension type(LT).

Physical Properties of Organic- and Inorganic-Fiber Reinforced Portlandcement (유기 및 무기 섬유로 보강한 포트랜드 시멘트의 물성 연구)

  • Chang Pok-Kie;Kim Yun Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.690-695
    • /
    • 2004
  • In this study, inorganic (steel, asbestos and carbon) and organic (polyacryl and polyamide) fibers were used to investigate their reinforcing effects of the physical properties of Portland cement. From the load-displacement curve of each reinforced specimen, fracture strength, Young's module, fracture energy and fracture toughness were computed and compared with each other. In addition, the experiment of their impact toughness was carried out and compared with the fracture energy. For the improvement of fracture strength the inorganic (asbestos) fiber reinforcement was most effective, while the best reinforcing effect of impact toughness was achieved by organic (polyacryl) fiber. And steel fiber proved to be most adequate for improvement of both fracture strength and impact toughness. Steel fiber also showed the highest fracture energy and fracture toughness among all of the fibers.

An Experimental Study on the Behavior of Miscopiles installed in Weathered Weak Rock (풍화암 지반에 설치된 소구경말뚝의 거동에 관한 연구)

  • 박성재;정경환;이세훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.389-396
    • /
    • 1999
  • In this study compressive and tensile load tests have been performed to investigate reinforcing effect and load transfer mechanism of small diameter piles installed in the foundation soil for the marine suspension bridge. Load tests were carried out on steel plate with diameters of 50cm, 100cm and 150cm varying loads starting from 39 tons up to 314 tons. Small diameter piles were proved to behavior like as friction piles and loads were not transmitted to the bottom of piles. From pull-out tests, the uplift capacity of small diameter piles was largely influenced by reinforcing materials compared to frictional resistance between piles and adjacent soils. The bearing capacity of small diameter piles appeared to be higher than the ultimate bearing capacity evaluated using static formulae. The load carrying capacity of small diameter piles was superior to the bored piles with a similar size. Thus, ultimate bearing capacity estimated from static formulae can provide conservative designs and thereby resulting in economic disadvantages. A further study to accumulate data regarding various soil conditions is recommended for an improved estimation of bearing capacity of piles with small diameter.

  • PDF

A Experimental Study on Evaluation of Anti-Corrosion Performance of Reinforced Concrete with Chloride and Inhibitor Using Tafel Extrapolation Method (타펠 외삽법을 이용한 NaCl 및 LiNO2가 첨가된 철근 콘크리트의 방식성능 평가에 관한 실험적 연구)

  • Park, Dong-Jin;Park, Jang-Hyun;Kim, Yeung-Kwan;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.7-8
    • /
    • 2017
  • Corrosion of reinforced concrete embedded in concrete is a deterioration phenomenon due to intrusion of embodied or Airborne chloride ions. Corrosion of a embedded steel increases the volume of the rebar and causes damage to the structure such as cracking and peeling of the concrete. This causes penetration of various corrosive factors and accelerates the corrosion of reinforcing bars, which has a serious effect on the durability of the structure. Researches on the corrosion phenomenon of these rebars by electrochemical methods have been carried out for a long time, but it is a lack of research in Korea. Therefore, in this study, one of electrochemical experimental methods, Tafel extrapolation method, was used to evaluate the performance of reinforcing bars according to the amount of NaCl and LiNO2 added to concrete.

  • PDF

Behavior According to Confinement of Compressive Concrete on Flexural Members Reinforced with FRP Bars (FRP bar를 주근으로 사용한 콘크리트 휨부재의 압축측 콘크리트 구속에 따른 거동)

  • Seo, Dae-Won;Han, Byum-Seok;Shin, Sung-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.110-118
    • /
    • 2008
  • The use of FRP bar as reinforced concrete beams is considered as one of the most prominent solution that may overcome the corrosion of reinforcing steel bars. However, in the case of FRP reinforced concrete, both the reinforcing and the reinforced materials are brittle. For this reason, ductility of structures with FRP reinforcement is much less than that of structures with steel reinforcements. In this study, a method has been suggested to provide a meaningful quantification of ductility for concrete beams reinforced with FRP bars. This paper shows which the confinement to the compression concrete by the spiral can increase the ductility of FRP over-reinforced concrete beams.

An Evaluation of Blast Resistance of Partially Reinforced CFT Columns using Computational Analysis (전산해석을 이용한 부분 보강된 CFT 기둥의 폭발저항성능 평가)

  • Kim, Han-Soo;Wee, Hae-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.503-510
    • /
    • 2015
  • In this paper, the blast resisting performance of partially reinforced CFT columns was compared with the normal CFT columns to evaluate the effect of reinforcing with steel plates. Autodyn which is a specialized hydro-code for analysis of explosion and impact was used to simulate the structural behavior of the CFT columns under the blast loadings. The interaction between concrete and surrounding steel plates was modeled with friction and join option to represent the realistic damage of columns. According to the analysis, the partially reinforced CFT column showed enhanced blast resisting performance than the normal CFT columns. Also the improvement of blast resisting performance was depended on the height of reinforcing steel plates.

Analytical Study on the fatigue Behavior of Reinforced Concrete Bridge Piers under Earthquake (지진시 철근콘크리트 교각의 피로거동에 관한 해석적 연구)

  • 김태훈;이상철;신현목
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.389-396
    • /
    • 2001
  • This paper presents an analytical prediction of the fatigue behavior of reinforced concrete bridge piers under earthquake. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. In boundary plane at which each member with different thickness is connected, local discontinuous deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel. The proposed numerical method for fatigue behavior of reinforced concrete bridge piers under earthquake will be verified by comparison with reliable experimental results.