• Title/Summary/Keyword: reinforcement materials

Search Result 1,067, Processing Time 0.026 seconds

Analysis of Groundwater Level Reduction Effects to Burial Angle of Slope Reinforcement Materials (비탈면 보강재의 매설각에 따른 지하수위 저감효과 분석)

  • Hyeonjun Yoon;Sungyeol Lee;Wonjin Baek;Jaemo Kang;Jinyoung Kim;Hwabin, Ko
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.8
    • /
    • pp.5-11
    • /
    • 2023
  • Due to frequent occurrences of concentrated heavy rainfall caused by abnormal climate conditions in recent years, collapses of steep slopes have been occurring frequently due to surface erosion and increased pore water pressure. Various methods are being applied to prevent slope collapses, such as increasing the resistance to movement and reducing pore water pressure. Research on these methods has been consistently conducted as they provide an efficient response to slope collapses by satisfying both the conditions of resistance to movement and pore water pressure simultaneously. Therefore, in this study, we propose an upward slope reinforcement method by burying drainage materials with an upward slope inclination, instead of the conventional horizontal application. This approach aims to satisfy both slope reinforcement and drainage functions effectively, offering a comprehensive solution for slope stabilization. Furthermore, to determine the optimal burial angle that exhibits the most effective reinforcement and drainage effects of the proposed method, we investigated the reinforcement and drainage effects under conditions where the horizontal drainage materials were set at angles ranging from 0° to 60° in increments of 10° on a representative cross-section. Additionally, indoor model experiments were conducted under the conditions of 40°, which showed the most outstanding drainage effect, and 20°, which exhibited the highest safety factor, to validate the numerical analysis results. The results showed that the burial angle of 40° exhibits a relatively higher drainage effect as with the numerical analysis results, while the angle of 20° results in inadequate drainage and observed slope collapse.

Morphological optimization of process parameters of randomly oriented carbon/carbon composite

  • Raunija, Thakur Sudesh Kumar;Manwatkar, Sushant Krunal;Sharma, Sharad Chandra;Verma, Anil
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.25-31
    • /
    • 2014
  • A microstructure analysis is carried out to optimize the process parameters of a randomly oriented discrete length hybrid carbon fiber reinforced carbon matrix composite. The composite is fabricated by moulding of a slurry into a preform, followed by hot-pressing and carbonization. Heating rates of 0.1, 0.2, 0.3, 0.5, 1, and $3.3^{\circ}C/min$ and pressures of 5, 10, 15, and 20 MPa are applied during hot-pressing. Matrix precursor to reinforcement weight ratios of 70:30, 50:50, and 30:70 are also considered. A microstructure analysis of the carbon/carbon compacts is performed for each variant. Higher heating rates give bloated compacts whereas low heating rates give bloating-free, fine microstructure compacts. The compacts fabricated at higher pressure have displayed side oozing of molten pitch and discrete length carbon fibers. The microstructure of the compacts fabricated at low pressure shows a lack of densification. The compacts with low matrix precursor to reinforcement weight ratios have insufficient bonding agent to bind the reinforcement whereas the higher matrix precursor to reinforcement weight ratio results in a plaster-like structure. Based on the microstructure analysis, a heating rate of $0.2^{\circ}C/min$, pressure of 15 MPa, and a matrix precursor to reinforcement ratio of 50:50 are found to be optimum w.r.t attaining bloating-free densification and processing time.

FRACTURE STRENGTH OF COMPOSITE RESIN WITH VARIOUS FIBER REINFORCING MATERIALS (수종의 섬유보강재가 복합레진의 파절강도에 미치는 영향)

  • Park, Ji-Man;Cho, Yong-Bum;Hong, Chan-Ui
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.371-380
    • /
    • 2000
  • The effect of fiber reinforcing materials on the fracture strength of composite resin was evaluated. Each ten composite resin bars reinforced by glassfiber[Fiber-Splint ML$^{(R)}$(Polydentia SA, Switzerland)], polyethylene fiber [Ribbond$^{(R)}$(Ribbond Inc., U.S.A.)] and polyaramid fiber[Kevlar$^{(R)}$(DuPont, U.S.A.)] were loaded under the 3-point compression technique. Another ten pure composite resin bars without reinforcement were used as a control group. Then mean fracture strength and standard deviation were calculated and a ANOVA and Scheffe test were used in statistics. The results were as follows: 1. Kevlar group showed the highest fracture strength as 175.5MPa (p<0.05). Fiber-Splint ML group showed the lowest fracture strength as 112.7MPa. 2. The mean value of fracture strength in Ribbond group was 136.4MPa, and that of unterated control group was 143.6MPa. No difference was found between the two groups. 3. Ribbond and Kevlar reinforcement groups showed a catastrophic failure, where complete separation of pieces occurs to a unseparated fracture pattern. The use of Kevlar reinforcement fibers with composite resin showed significant increase in the average load failure and the presence of the fibers did prevent the catastrophic crack propagation present in the unreinforced samples. The use of Ribbond reinforcement fibers with composite resin showed no significant increase in the average load failure. However, the presence of the fibers did prevent the catastrophic crack propagation. Because high strength of glassfiber are rapidly degraded on exposure to moisture and humidity. The use of Fiber-Splint ML reinforcement fibers with composite resin showed significant decrease in the average load failure and displayed catastrophic fractures.

  • PDF

Microscopic Evaluation and Analysis on the Tensile Strength of Hybridized Reinforcement Filament Yarns by the Commingling Process

  • Herath, Chathura Nalendra;Kang, Bok-Choon;Hwang, Beong-Bok;Min, Kyung-Ho;Seo, Jung-Min;Lee, In-Chul;Ruchiranga, Jayasekara Vishara;Lim, Joong-Yeon
    • Advanced Composite Materials
    • /
    • v.17 no.3
    • /
    • pp.225-233
    • /
    • 2008
  • The analysis in this paper is focused on the pattern of mixing of filaments over a cross-section of hybrid yarns according to different combinations of reinforcement and matrix filament yarns through microscopic view. The volume content of filament in hybrid yarn cross-section was maintained at 50% for both reinforcement and matrix, and the hybrid yarns count at 600 tex throughout the experiments. It was observed from the experiments that diameters of reinforcement and matrix filaments have strong effects particularly on the pattern of mixing of filaments over a cross-section of hybrid yarns such that the hybrid yarns with more or less equal diameters of reinforcement and matrix filaments showed considerably even distributions over the hybrid yarn cross-section. This paper also investigates the possibility of hybridizing carbon/aramid, carbon/glass and aramid/glass matrices through the commingling process. In the experiment, several process parameters were selected and they include pressure, yarn oversupply-rate and different nozzle types. As a result of these experiments, it was concluded that the hybridized materials show better performance than individual reinforced filament yarns in terms of mechanical properties. For small tensile forces, the carbon/glass/matrix combination turned out to be good enough for general purpose applications.

Dynamic behavior of cracked ceramic reinforced aluminum composite beam

  • Selmi, Abdellatif
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.387-393
    • /
    • 2022
  • This paper presents the vibration analysis of cracked ceramic-reinforced aluminum composite beams by using a method based on changes in modal strain energy. The crack is considered to be straight. The effective properties of composite materials of the beams are estimated through Mori-Tanaka micromechanical model. Comparison study and numerical simulations with various parameters; ceramic volume fraction, reinforcement aspect ratio, ratio of the reinforcement Young's modulus to the matrix Young's modulus and ratio of the reinforcement density to the matrix density are taken into investigation. Results demonstrate the pronounced effects of these parameters on intact and cracked ceramic aluminum beams.

Study of TiCN Aditions to an 2xxx Series Aluminium Alloy

  • Ruiz-Navas, E.M.;Delgado, Tienda M.L.;Benito, Gonzalez S.;Gordo, E.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1037-1038
    • /
    • 2006
  • The increasing demand of PM parts for automobile and aerospace applications has caused a strong development of the aluminium based metal matrix composites (MMCs).Aluminium alloys are one of most widely used materials as matrix in MMCs, both in research and development as well as in industrial applications. In the present work, the influence of the ceramic reinforcement addition to a 2xxx series aluminium alloy is studied. Several percentages of TiCN have been added to the Al-Cu alloy using PM techniques, in order to analyze its influence on the liquid phase sintering process and on the final properties of the material.

  • PDF

Proposed Design Provisions for Development Length Considering Effects of Confinement

  • Choi, Oan-Chul;Kim, Byoung-Kook
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.49-54
    • /
    • 2006
  • Confinement is major contribution to bond strength between reinforcement steel bars and concrete. Cover thickness, bar spacing and transverse reinforcement are the key confinement factors of current provisions for the development and splices of reinforcement. However, current provisions are still too complicated to determine the values of the confinement, which need to be well delineated in the process of design. In this study, an experimental work using beam-end and splice specimens was performed to examine the effect of concrete cover on bond strength. The results of this experiment and previously available data are analyzed to identify the effects of confinement on bond strength. From this reevaluation, new provisions for the development and splices of reinforcement are proposed. The provisions suggest some limitations in the confinement index. The new provisions will allow the engineers to use a simple and yet satisfactory and appropriate method or a precise approach for design to determine the values of confinement on the calculation of development and splice lengths.

Reinforcement of Load Bearing Wall Using Polymer Composites (폴리머 복합체에 의한 내력벽 보강효과 실험)

  • 연규석;김광우;허남석;정경현;주명기;최동순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.340-347
    • /
    • 1996
  • Recent years, many items in construction industry are produced by precasting from factories. Among the precasting items which are cost effective by virtue of standardization of size and reduction of construction time is the load bearing wall. However, due to many reasons inherent in concrete materials, often it was found that the member did not meet the designed strength after construction. In this case, the wall had to be ether replaced or reinforced somehow. Since replacement is almost impossible due to budget and schedule, reinforcement is a preferred choice in many cases. Therefore, objective of this study was to evaluate reinforcement of the wall using polymer composites. Flexural strength and axial compressive strength were evaluate for the wall before and after reinforcement. The polymer composite reinforcement was found to be very effective in improving these strengths.

  • PDF

The comparison between experimental and FEA results for crack initiation due to corrosion of reinforcement (콘크리트 구조물의 철근부식으로 인한 균열발생에 관한 실험적, 해석적 결과의 비교)

  • 장상엽;김용철;조용범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.693-698
    • /
    • 2003
  • Corrosion of reinforcement and deterioration of concrete short the lifetime of reinforced concrete structure and affect the safety of the structure. In particular, the corrosion of reinforcement causing the inner pressure of the interface between the concrete and reinforcement is known to significantly contribute to the premature deterioration of concrete structure. Several attempts have been made to predict the cracking time of the concrete structure. However, problems such as the lack of reproducibility of concrete tests and non-uniformity of materials have hampered thess kinds of studies. Thus, the mechanism of the concrete cracking due to reinforcement corrosion is in the way. This studymeasured the mechanical properties of corrosion products using the nano-indentation test method. Likewise, the critical thickness of corrosion products for the cracking of concrete cover was investigated using the finite element and experimental methods.

  • PDF