• Title/Summary/Keyword: reinforcement design

Search Result 1,838, Processing Time 0.031 seconds

Evaluation of Bending Creep Performance of Laminated Veneer Lumber (LVL) Formwork for the Design of Timber Concrete Composite (TCC) Structures

  • Hyun Bae KIM;Takuyuki YOSHIOKA;Kazuhiko FUJITA;Jun ITO;Haruka NOHARA;Keiji NOHARA;Toshiki NARITA;Wonwoo LEE;Arata HOSOKAWA;Tetsuiji TANAKA
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.4
    • /
    • pp.375-382
    • /
    • 2024
  • The study focuses on evaluating the bending creep performance of laminated veneer lumber (LVL) formwork in timber concrete composite (TCC) structures. Timber-framed construction is highlighted for its environmental benefits and seismic resistance, but limitations such as poor tensile strength and brittle failure in bending hinder its use in high-rise buildings. Wood-concrete hybrid structures, particularly those using reinforced concrete slabs with TCC floors, emerge as a potential solution. The research aims to understand the time-dependent behavior of TCC components, considering factors like wood and concrete shrinkage and connection creep. The experiment was conducted in western Japan on the TCC floor designed for use in the Kama-city Inatsuki-higashi compulsory education school. The LVL formwork, measuring 9,000 mm by 900 mm, and concrete is loaded onto it for testing. The creep test periods are examined using concrete loading. It employs a comprehensive creep analysis, adhering to Japanese standards, involving deflection measurements and regression analysis to estimate the creep coefficient. Results indicate substantial deformation after shoring removal, suggesting potential reinforcement needs. The study recommends extending test periods for improved accuracy and recognizing regional climate impacts. Overall, the research provides valuable insights into the potential of LVL formwork in TCC structures, emphasizing safety considerations and paving the way for further experimentation under varied conditions to validate structural integrity.

Practical Model to Estimate Road User Cost for Bridge Maintenance Strategy (교량 유지관리 전략 수립을 위한 실용적 도로이용자비용 추정 모델)

  • Park, Kyung-Hoon;Sun, Jong-Wan;Lee, Sang-Yoon;Lee, Jong-Soon;Cho, Hyo-Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.131-142
    • /
    • 2007
  • The road user cost in indirect costs as well as direct costs such as the inspection/ diagnosis cost and the repair/reinforcement cost should be considered as one of the important items in the life-cycle cost-effective design and maintenance of the bridges. To estimate the road user cost, this paper formulates the road user cost as a sum of the user delay cost and the vehicle operating cost considering the detour effect. A numerical traffic simulation and a regression analysis are performed to develop a regression model due to a time delay. The proposed regression model is applied to the generation of the maintenance strategy based on the life-cycle cost and performance, and its effectiveness and applicability is investigated. The road user cost has a great influence on establishing the maintenance strategy, and the proposed regression model could be successfully utilized to estimate the road user cost of a bridge.

Flexural Behavior of Concrete Beams Reinforced with Lap Spliced FRP Bar (겹이음된 FRP 보강근으로 보강된 콘크리트 보의 휨거동)

  • Oh, Hongseob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.186-194
    • /
    • 2009
  • This is a part of the extensive ongoing investigation being carried out by author to develop appropriate design procedure of the concrete member reinforced with FRP rebars instead of conventional steel rebars. This study presents the experimental results of a research programme to assess the structural characteristics of spliced rebar in reinforced concrete members with FRP reinforcement. The test variables are the diameter of FRP rebar and the embedment length. The development length (ld) was calculated according to the ACI 440 for FRP rebars in concrete. A total of 14 concrete beams reinforced with spliced FRP rebars and 4 reference beams reinforced with non-spliced FRP rebars were tested. The effects of bar size (10, 13, 16 and 19 mm) and splice length (from 0.72 to 1.58ld) on the bond strength were empirically evaluated. The test results indicate that a modification factor of 1.3 and 1.6 is relatively sufficient for the bond development length of glass FRP rebars in order to achieve an adequate tension lap splice length.

Regarding a Shear Strengthening of an Epoxy Mortar Panel for RC Beam Without Shear Strengthening Reinforcing Bar (전단보강철근이 없는 RC보에 대한 에폭시 모르타르 패널의 전단보강에 관한 연구)

  • Lee, Sang-Ho;Cho, Min-Su;Heo, Jae-Sang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.135-146
    • /
    • 2008
  • In this study, the effect of epoxy mortar panel as the shear strengthening material of reinforced concrete beam is investigated by loading test. The main variables are the kind of strengthening material, the amount of reinforcement and the spacing of CFS(Carbon Fiber Sheet) stirrups. The design method to use epoxy mortar panel as shear strengthening of reinforced concrete beam took the shear capacity as the form of the sum of $V_c$, $V_s$, $V_{sheet}$ and $V_p$. By making a comparison between the values calculated by the proposed shear strength prediction formula and those from the loading test results, the mean value was 1.10 and the standard deviation was 8.16%.

Landscape Configuration Reading of 'Jangseong Pilmaseowon' through the Recomposition of Landscape (경관적 재구성을 통한 '장성 필암서원' 경관짜임의 독해(讀解))

  • Rho, Jae-Hyun;Huh, Joon;Choi, Jong-Hee
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.32 no.2
    • /
    • pp.42-54
    • /
    • 2014
  • This study was conducted to identify landscaping elements such as location, situation and feng shui included in the spatiality of Jangseong Pilmaseowon and to interpret aesthetic features of visual-perceptual spatial composition according to its arrangement. As it is shown in 'Pilamseowon', 'Pilbongseowon', and 'Gimhaseoseowon' appearing in antique maps, the awareness considering 'Pilam' as 'Pilbong' and 'Gimhaseo' was revealed. Mountain Pilamsan[Mountain Munpilsan] which is the location of seowon and Pilam(Brush-shaped rock) is the core of establishment of location identity of Pilamseowon and the symbol of Haseo Kim In-hu, which shows that they are deeply related to Ingeoljiryeong(人傑地靈: 'a place derives reflected glory from an illustrious human') based on connection. Pilamseowon shows locational characteristics of living in stream(溪居) facing panoramic 'jeungsan field' without Ansan(案山). Based on the teachings of Neo-Confucianism, Village Maekdong which is the birth place of Haseo, Pilam, seowon geomancy considering the Danbonghamseo-type(丹鳳含書形) geographical shape, formative reflection, Pilmaseowon and structures revealed in building naming more clearly show symbolic landscaping features resulting from 'theory of 'Heaven-Man Unity'(天人合一)' representing the union of nature and haman, than other seowons. The maximization of centrality through connected yards constructed with the 'jeondang hujae(前堂後齋)' arrangement in the order of Whakyeon-lu, Chenogjeol-dang, Jindeak-jae or Sungui-jae, and Woodong-sa is a unique feature of spatial frame of Pilmaseowon. In addition, it reveals the centrality reinforced with 'the move of inner center through arrangement of Kyeongjang-kag and Kyesengbi inside 'YuSik(遊息)' space and religious space' and the landscaping arrangement of Pilmaseowon from installation and device for reinforcement of territoriality. Moreover, it was found that orders and aesthetic features based on Neo-Confucianism were logically realized in the formation of Pilmaseowon with visual and compositional landscaping arrangement such as 'reinforcement of view centrality through composition of windows and doors', 'securement of visual transparency through framing and duplication', and 'realization of hierarchy through height of jaesil toenmaru'. The meaning system and spatial or visual aesthetic features of Pilmaseowon newly arranged and interpreted through landscaping recomposition is not a coincidental but inevitable result. It is another resource basis and an element that can improve the internal exuberance of Pilamseowon. This landscaping reading study is expected to improve the understanding of landscapes of Pilmaseowon and elevate the sensibility of unrevealed cultural landscapes.

A Study on the Damages of Head Works by the Storm Flood in the Area of Cheong Ju and Boeun -Emphasis onFactors Influenced on the Disasters and their Countermeasures- (淸州 및 報恩地方의 頭首工洪水災害에 關한 調査硏究(II) -災害原因 및 對策方案을 中心으로-)

  • Nam, Seong-Woo;Kim, Choul-Kee
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.2
    • /
    • pp.49-55
    • /
    • 1982
  • The purpose of this study is to classify the factors influenced on the damages of head works suffered from the storm flood occurred on July 22 1980 in both Musim and Bochong rivers and to find out an integral counter measures against the causes influenced on the disaster of head works in the engineering aspect of planning, design, construction and maintenance. In this survey, number of samples was taken 25 head Works, and the counter measures against the causes of their disasters summarized was as follows, 1. In the aspect of planning a. As the flood water level after the establishment of head works is more increased than the level before setting of head works owing to having more gentle slope of river bed between the head works than nature slope of river bed. Number of head works should be reduced for the appropriate annexation of them b. In the place where head works is established on the curved point of levee, the destruction of levee becomes severe by the strong deflective current. Therefore the setting of head works on the curved point should be kept off as long as possible and in case of unavoidable circumstances the construction method such as reinforced concrete wall or stone wall filed with concrete and anchored bank revetments should be considered. 2. In the aspect of design a. As scoring phenomena at up stream is serious around the weir Where the concentration of strong current is present in such a place, up stream apron having impermeability should be designed to resist and prevent scoring. b. As the length of apron and protected bed is too short to prevent scoring as down stream bed, the design length should be taken somewhat more than the calculated value, but in the case the calculated length becomes too long to be profitable, a device of water cushion should be considered. c. The structure of protected river bed should be improved to make stone mesh bags fixed to apron and to have vinyl mattress laid on river bed together with the improvement for increasing the stability of stone mesh bags and preventing the sucked sand from the river bed. d. As the shortage of cut-off length, especialy in case of the cutoffs conneting both shore sides of river makes the cause of destruction of embankment and weir body, the culculation of cut-off length should be taken enough length based on seepage length. 3. In the aspect of design and constructions a. The overturing destruction of weir by piping action was based on the jet water through cracks at the construction and expansion joints. therefore the expansion joint should be designed and constructed with the insertion of water proof plate and asphalt filling, and the construction joint, with concaved shape structure and steel reinforcement. b. As the wrong design and construction of the weep holes on apron will cause water piping and weir destruction, the design and construction of filter based on the rule of filter should be kept for weep holes. c. The wrong design and construction of bank revetment caused the severe destruction of levee and weir body resulting from scoring and impulse by strong current and formation of water route behind the revetment. Therefore bank revetment should be designod and constructed with stone wall filled with concrete and anchored, or reinforced concrete wall to prevent the formation of water flow route behind the wall and to resist against the scoring and impulse of strong stream. 4. In the aspect of maintenance When the damaged parts occurred at head works the authorities and farmers concerned should find and mend them as soon as possible with mutual cooperation, and on the other hand public citizen should be guided for good use of public property.

  • PDF

Bond Characteristics and Splitting Bond Stress on Steel Fiber Reinforced Reactive Powder Concrete (강섬유로 보강된 반응성 분체 콘크리트의 부착특성과 쪼갬인장강도)

  • Choi, Hyun-Ki;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.651-660
    • /
    • 2014
  • Structural members using ultra high strength concrete which usually used with steel fiber is designed with guidelines based on several investigation of SF-RPC(steel fiber reinforced reactive powder concrete). However, there are not clear design method yet. Especially, SF-RPC member should be casted with steam(90 degree delicious) and members with SF-RPC usually used with precast members. Although the most important design parameter is development method between SF-RPC and steel reinforcement(rebar), there are no clear design method in the SF-RPC member design guidelines. There are many controversial problems on safety and economy. Therefore, in order to make design more optimum safe design, in this study, we investigated bond stress between steel rebar and SF-RPC according to test. Test results were compared with previously suggested analysis method. Test was carried out with direct pull out test using variables of compressive strength of concrete, concrete cover and inclusion ratio of steel fiber. According to test results, bond stress between steel rebar and SF-RPC increased with increase of compressive strength of concrete and concrete cover. Increasing rate of bond stress were decrease with increase of compressive strength of SF-RPC and concrete cover significantly. 1% volume fraction inclusion of steel fiber increase the bond stress between steel rebar and SF-RPC with two times but 2% volume fraction cannot affect the bond stress significantly. There are no exact or empirical equations for evaluation of SF-RPC bond stress. In order to make safe bond design of SF-RPC precast members, previously suggested analysis method for bond stress by Tepfers were evaluated. This method have shown good agreement with test results, especially for steel fiber reinforced RPC.

A Study on the Cause and Improvement of Crack in the Installing Structure of the Bulkhead of Aircraft (항공기 Bulkhead 체결구조의 균열 원인 및 개선에 관한 연구)

  • Choi, Hyoung Jun;Park, Sung Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.448-454
    • /
    • 2020
  • This study aims to determine the cause of structural defects occurring during aircraft operations and to verify the structural integrity of the improved features. The fracture plane was analyzed to verify the characteristics of the cracks and the fatigue failure leading to the final fracture was determined by the progress of the cracks by the repeated load. During aircraft operations, the comparative analysis of the load measurement data at the cracks with the aircraft design load determined that the measured load was not at the level of 30% of the design to be capable of being damaged. A gap analysis resulted in a significant stress of approximately 32 ksi at the crack site. Pre-Load testing also confirmed that the M.S. was reduced by more than 50% from +0.71 to +0.43, resulting in a sharp increase in aircraft load and the possibility of cracking when combined. Thus, structural reinforcement and the removal of the gap for aircraft cracking sites improved the defect. Based on the structural strength analysis of the improvement features, the bulkhead has a margin of about +0.88 and the fitting feature is about +0.48 versus allowable stress. In addition, the life analysis results revealed an improvement of approximately 84000 hours.

Experiment and Nonlinear Analysis of DH Beams with Steel Form (외부철판이 사용된 DH Beam의 휨거동에 대한 실험 및 비선형해석)

  • Moon, Jeong-Ho;Oh, Young-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.171-179
    • /
    • 2014
  • The purpose of this study is to evaluate the structural performance of DH beams. DH beam construction method uses thin steel plates as form-works and structural elements. The prefabricated plates and rebars of DH beams were transported to a construction site and erected for casting concrete at the site. In this study, the contribution of steel plates to the flexural strength was evaluated since the plates were expected to play a role as reinforcements. Five test specimens were made for experimental and analytical studies. They consisted of two DH beams for the positive moment test and two DH beams for the negative moment test and a RC beam for the comparison purpose. Test results on DH beams were compared with design equations and the RC beam test result. It was proven that DH beams demonstrated the good flexural behavior showing sufficient strengths and deformation capacities. Flexural strengths, principal strains of concrete, and rebar stresses were evaluated through nonlinear finite element analyses for two test beams. The analyses also showed that steel plates can contribute to the enhancement of flexural strength of DH beams. Based on experimental and analytical studies, it was concluded that steel plates of DH beams can be used as good flexural reinforcements.

Suggestion of the Settlement Estimation Method for Granular Compaction files Considering Lateral Deformations (횡방향 변형을 고려한 조립토 다짐말뚝의 침하량 평가기법 제안)

  • Hwang Jung-Soon;Kim Hong-Taek;Kim Seung-Wook;Koh Yong-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.149-157
    • /
    • 2005
  • In cases of the loosely accumulated ground and soft clayey soils, the settlement criterion usually governs in evaluating the stability of structures. The settlement is also a dominant factor to control the design of granular compaction piles mainly applied to the reinforcement of foundation structures in soft ground. In the previous studies, settlement behaviors of granular compaction piles have generally been analyzed with an evaluation of the settlement reduction factor based on the load-sharing ratio and the replacement ratio. In this approach, however, since the reinforced ground with granular compaction piles is simplified as the composite ground, only the difference of a relative vertical strength between piles and soils is taken into account without reflecting lateral behaviors of granular compaction piles. In the present study, the method of estimating the settlement of granular compaction piles is proposed by synthetically considering a vertical strength of the ground, lateral behaviors of granular compaction piles, the strength of pile materials, a pile diameter, and an installation distance of the pile. Further, far the verification of a validity of the proposed method, predicted settlements are compared with results from previous studies. In addition, parametric studies are performed together with detailed analyses of relevant design parameters.